Skip to main content

2017 | OriginalPaper | Buchkapitel

The Role of Corticomuscular Transmission in Movement Execution

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Current research in corticomuscular transmission, e.g. by assessing corticomuscular coherence during movement execution, has mainly focused on frequencies higher than 10 Hz. However, the effective bandwith of force generation at the spinal level has been proved to be below this frequency threshold. Recent studies are increasingly showing the importance of low-frequency modulations as a cortical control input in movement execution. Still, the presence of motion and muscular artifacts can significantly bias the role of slow cortical potentials. This work addresses current works that characterize corticomuscular motor pathways and discusses the effective bandwidth (in relation to force generation) of the corticomuscular drive to serve as base for present and future debate on the behavior of corticomuscular transmission in movement execution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Conway, D. Halliday, S. Farmer, U. Shahani, P. Maas, A. Weir, J. Rosenberg, Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J. Physiol. 489, 917–924 (1995)CrossRef B. Conway, D. Halliday, S. Farmer, U. Shahani, P. Maas, A. Weir, J. Rosenberg, Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J. Physiol. 489, 917–924 (1995)CrossRef
2.
Zurück zum Zitat D. Halliday, B. Conway, S. Farmer, J. Rosenberg, Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neurosci. Lett. 241, 5–8 (1998)CrossRef D. Halliday, B. Conway, S. Farmer, J. Rosenberg, Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neurosci. Lett. 241, 5–8 (1998)CrossRef
3.
Zurück zum Zitat J.T. Gwin, D.P. Ferris, Beta- and gamma-range human lower limb corticomuscular coherence. Front. Neurosci. 6(258) (2012) J.T. Gwin, D.P. Ferris, Beta- and gamma-range human lower limb corticomuscular coherence. Front. Neurosci. 6(258) (2012)
4.
Zurück zum Zitat J. Ushiyama, Y. Masakado, T. Fujiwara, T. Tsuji, K. Hase, A. Kimura, J. Ushiba, Contraction level-related modulation of corticomuscular coherence differs between tibialis anterior and soleus muscles in humans. J. Appl. Physiol. 112, 1258–1267 (2012)CrossRef J. Ushiyama, Y. Masakado, T. Fujiwara, T. Tsuji, K. Hase, A. Kimura, J. Ushiba, Contraction level-related modulation of corticomuscular coherence differs between tibialis anterior and soleus muscles in humans. J. Appl. Physiol. 112, 1258–1267 (2012)CrossRef
5.
Zurück zum Zitat T.H. Petersen, M. Willerslev-Olsen, B.A. Conway, J.B. Nielsen, The motor cortex drives the muscles during walking in human subjects. J. Physiol. 590, 2443–2452 (2012)CrossRef T.H. Petersen, M. Willerslev-Olsen, B.A. Conway, J.B. Nielsen, The motor cortex drives the muscles during walking in human subjects. J. Physiol. 590, 2443–2452 (2012)CrossRef
6.
Zurück zum Zitat L. Brinkman, A. Stolk, H.C. Dijkerman, F.P. de Lange, I. Toni, Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions. J. Neurosci. 34(44), 14783–14792 (2014)CrossRef L. Brinkman, A. Stolk, H.C. Dijkerman, F.P. de Lange, I. Toni, Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions. J. Neurosci. 34(44), 14783–14792 (2014)CrossRef
7.
Zurück zum Zitat A. Guillot, C. Collet, The Neurophysiological Foundations of Mental and Motor Imagery (Oxford University Press, 2010) A. Guillot, C. Collet, The Neurophysiological Foundations of Mental and Motor Imagery (Oxford University Press, 2010)
8.
Zurück zum Zitat D. Farina, F. Negro, Common synaptic input in motor neurons, motor unit synchronization, and force control. Exerc. Sport Sci. Rev. 43(1), 23–33 (2015) D. Farina, F. Negro, Common synaptic input in motor neurons, motor unit synchronization, and force control. Exerc. Sport Sci. Rev. 43(1), 23–33 (2015)
9.
Zurück zum Zitat G. Foffani, A.M. Bianchi, G. Baselli, A. Priori, Movement-related frequency modulation of beta oscillatory activity in the human subthalamic nucleus. J. Physiol. 568(Pt. 2), 699–711 (2005)CrossRef G. Foffani, A.M. Bianchi, G. Baselli, A. Priori, Movement-related frequency modulation of beta oscillatory activity in the human subthalamic nucleus. J. Physiol. 568(Pt. 2), 699–711 (2005)CrossRef
10.
Zurück zum Zitat T.J. Bradberry, R.J. Gentili, J.L. Contreras-Vidal, Reconstructing three-dimensional hand movements from non-invasive electroencephalographic signals. J. Neurosci. 30, 3432–3437 (2010)CrossRef T.J. Bradberry, R.J. Gentili, J.L. Contreras-Vidal, Reconstructing three-dimensional hand movements from non-invasive electroencephalographic signals. J. Neurosci. 30, 3432–3437 (2010)CrossRef
11.
Zurück zum Zitat A. Presacco, R. Goodman, L. Forrester, J.L. Contreras-Vidal, Neural decoding of treadmill walking from noninvasive electroencephalographic signals. J. Neurophysiol. 106(4), 1875–1887 (2011)CrossRef A. Presacco, R. Goodman, L. Forrester, J.L. Contreras-Vidal, Neural decoding of treadmill walking from noninvasive electroencephalographic signals. J. Neurophysiol. 106(4), 1875–1887 (2011)CrossRef
12.
Zurück zum Zitat A. Úbeda, E. Hortal, E. Iáñez, C. Perez-Vidal, J.M. Azorín, Assessing movement factors in upper limb kinematics decoding from EEG signals. PLoS ONE 10(5), e0128456 (2015)CrossRef A. Úbeda, E. Hortal, E. Iáñez, C. Perez-Vidal, J.M. Azorín, Assessing movement factors in upper limb kinematics decoding from EEG signals. PLoS ONE 10(5), e0128456 (2015)CrossRef
13.
Zurück zum Zitat N. Jiang, L. Gizzi, N. Mrachacz-Kersting, K. Demstrup, D. Farina, A brain-computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clin. Neurophysiol. 126(1), 154–159 (2015)CrossRef N. Jiang, L. Gizzi, N. Mrachacz-Kersting, K. Demstrup, D. Farina, A brain-computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clin. Neurophysiol. 126(1), 154–159 (2015)CrossRef
14.
Zurück zum Zitat E. López-Larraz, L. Montesano, Á. Gil-Agudo, J. Minguez, Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates. J. NeuroEngineering Rehabil. 11(153) (2014) E. López-Larraz, L. Montesano, Á. Gil-Agudo, J. Minguez, Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates. J. NeuroEngineering Rehabil. 11(153) (2014)
15.
Zurück zum Zitat I. Mendez-Balbuena, J.R. Naranjo, X. Wang, A. Andrykiewicz, F. Huethe, J. Schulte-Möntig, M.-C. Hepp-Reymond, R. Kristeva, J. Neurophysiol. 109, 1579–1588 (2013) I. Mendez-Balbuena, J.R. Naranjo, X. Wang, A. Andrykiewicz, F. Huethe, J. Schulte-Möntig, M.-C. Hepp-Reymond, R. Kristeva, J. Neurophysiol. 109, 1579–1588 (2013)
16.
Zurück zum Zitat J. Raethjen, R.B. Govindan, S. Binder, K.E. Zeuner, G. Deuschl, H. Stolze, Cortical representation of rhythmic foot movements. Brain Res. 1236, 79–84 (2008)CrossRef J. Raethjen, R.B. Govindan, S. Binder, K.E. Zeuner, G. Deuschl, H. Stolze, Cortical representation of rhythmic foot movements. Brain Res. 1236, 79–84 (2008)CrossRef
Metadaten
Titel
The Role of Corticomuscular Transmission in Movement Execution
verfasst von
Andrés Úbeda
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-46669-9_229

Neuer Inhalt