Skip to main content
Erschienen in: Problems of Information Transmission 3/2020

01.07.2020 | Information Theory

The Sphere Packing Bound for Memoryless Channels

verfasst von: B. Nakiboğlu

Erschienen in: Problems of Information Transmission | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sphere packing bounds (SPBs)—with prefactors that are polynomial in the block length—are derived for codes on two families of memoryless channels using Augustin’s method: (possibly nonstationary) memoryless channels with (possibly multiple) additive cost constraints and stationary memoryless channels with convex constraints on the composition (i.e., empirical distribution, type) of the input codewords. A variant of Gallager’s bound is derived in order to show that these sphere packing bounds are tight in terms of the exponential decay rate of the error probability with the block length under mild hypotheses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
According to [12, p. 183], the SPB for the constant composition codes appears in [9] with an incomplete proof. The first complete proof of the SPB for the constant composition codes is provided in [10].
 
2
In [28], we have derived refined SPBs (which are optimal in terms of the prefactor for nonsingular cases) for all of the cases considered in [313, 17, 21, 22] using Augustin information measures via [26].
 
3
[31, p. 413] reads "An important feature of the lower bound, which will be derived, is that no assumption of constant-composition codewords is made, not even as an intermediate step.”
 
4
Augustin [24, Section 33] has an additional hypothesis, \(\mathop{\bigvee}\limits_{x\in {\mathscr{X}}}\rho (x)\le {1\mkern-4mu{\rm I}}\), which excludes certain important cases such as the Gaussian channels.
 
5
Note that \(\sum \limits_{t=L}^{M}\left(\begin{array}{c}M\\ t\end{array}\right){s}^{t}{(1-s)}^{M-t}=\left(\begin{array}{c}M\\ L\end{array}\right){s}^{L}\sum \limits_{t=0}^{M-L}\frac{L!\,(M-L)!}{(L+t)!\,(M-L-t)!}{s}^{t}{(1-s)}^{M-L-t}\le \left(\begin{array}{c}M\\ L\end{array}\right){s}^{L}\) for all s ∈ [0, 1].
 
6
In particular, \(\|{q}_{\alpha }-{q}_{\eta }\| \le \sqrt{8\ln \frac{\epsilon }{\epsilon -(1-\epsilon )| \alpha -\eta | }}\), because \(\,\|\, {q}_{\alpha }-{q}_{\eta }\,\|\, \le \sqrt{4{D}_{1/2}({q}_{\alpha }\,\|\, {q}_{\eta })}\) by [36, Theorem 31], D1/2(qα ∥ qη) = nD1/2(qα,t ∥ qη,t) by [36, Theorem 28] and the definition of qα, \({D}_{1/2}({q}_{\alpha ,t}\,\|\, {q}_{\eta ,t})\le 2\ln \frac{2}{2-\,\|\, {q}_{\alpha ,t}-{q}_{\eta ,t}\,\|\, }\) by [26, equation (9)], and \(\,\|\, {q}_{\alpha ,t}-{q}_{\eta ,t}\,\|\, \le 2\frac{1-\epsilon }{\epsilon }| \eta -\alpha | \) by the definition of qα.
 
7
The constraint \(\sum\limits_{i}{\varrho }_{\alpha ,i}=\varrho \) determines λα uniquely, because the expression on the right-hand side of (78) is a nonincreasing function of λα.
 
8
Note that \({C}_{\alpha ,\varLambda ,\varrho }={C}_{\alpha ,{\varLambda }^{\le \varrho }}\) and \({q}_{\alpha ,\varLambda ,\varrho }={q}_{\alpha ,{\varLambda }^{\le \varrho }}\) for the Poisson channel \({\varLambda }^{\le \varrho }\colon\{f\in {\mathscr{F}}:\:\rho (f)\le \varrho \}\to {\mathcal{P}}({\mathcal{Y}})\) considered in [27, Example 10].
 
9
Blahut mentions only the first equality explicitly.
 
10
Recently, Yang argued that Blahut’s method can be used to derive the SPB if the minimax equality given in [54, equation (3.63)] holds. Thus, as a result of our analysis we can conclude that [54, equation (3.63)] does not holds in general. This fact can be derived using the absence of the minimax equality for G(RWpq) without relying on the reasoning in [54] as well.
 
Literatur
1.
Zurück zum Zitat Nakiboğlu, B., The Augustin Center and the Sphere Packing Bound for Memoryless Channels, in Proc. 2017 IEEE Int. Symp. on Information Theory (ISIT’2017), Aachen, Germany, June 25–30, 2017, pp. 1401–1405. Nakiboğlu, B., The Augustin Center and the Sphere Packing Bound for Memoryless Channels, in Proc. 2017 IEEE Int. Symp. on Information Theory (ISIT’2017), Aachen, Germany, June 25–30, 2017, pp. 1401–1405.
2.
Zurück zum Zitat Elias, P., Coding for Noisy Channels, IRE Conv. Rec., 1955, vol. 4, pp. 37–46. Reprinted in Key Papers in the Development of Information Theory, Slepian, D., Ed., New York: IEEE Press, 1974, pp. 102–111. Elias, P., Coding for Noisy Channels, IRE Conv. Rec., 1955, vol. 4, pp. 37–46. Reprinted in Key Papers in the Development of Information Theory, Slepian, D., Ed., New York: IEEE Press, 1974, pp. 102–111.
3.
Zurück zum Zitat Elias, P., Coding for Two Noisy Channels, Information Theory: Third London Symposium (London, England, Sept. 1955), Cherry C., Ed., London: Butterworth Sci., 1956, pp. 61–74. Elias, P., Coding for Two Noisy Channels, Information Theory: Third London Symposium (London, England, Sept. 1955), Cherry C., Ed., London: Butterworth Sci., 1956, pp. 61–74.
4.
Zurück zum Zitat Dobrushin, R.L.Asymptotic Estimates of the Probability of Error for Transmission of Messages over a Discrete Memoryless Communication Channel with a Symmetric Transition Probability Matrix, Teor. Veroyatn. Primen., 1962, vol. 7, no. 3, pp. 283–311 [Theory Probab. Appl. (Engl. Transl.), 1962, vol. 7, no. 3, pp. 270–300]. Dobrushin, R.L.Asymptotic Estimates of the Probability of Error for Transmission of Messages over a Discrete Memoryless Communication Channel with a Symmetric Transition Probability Matrix, Teor. Veroyatn. Primen., 1962, vol. 7, no. 3, pp. 283–311 [Theory Probab. Appl. (Engl. Transl.), 1962, vol. 7, no. 3, pp. 270–300].
5.
Zurück zum Zitat Altuğ, Y. and Wagner, A.B., On Exact Asymptotics of the Error Probability in Channel Coding: Symmetric Channels, arXiv:1908.11419[cs.IT], 2019. Altuğ, Y. and Wagner, A.B., On Exact Asymptotics of the Error Probability in Channel Coding: Symmetric Channels, arXiv:1908.11419[cs.IT], 2019.
6.
Zurück zum Zitat Altuğ, Y. and Wagner, A.B., Refinement of the Sphere Packing Bound for Symmetric Channels, in Proc. 49th Annu. Allerton Conf. on Communication, Control, and Computing, Monticello, IL, Sept. 27–30, 2011, pp. 30–37. Altuğ, Y. and Wagner, A.B., Refinement of the Sphere Packing Bound for Symmetric Channels, in Proc. 49th Annu. Allerton Conf. on Communication, Control, and Computing, Monticello, IL, Sept. 27–30, 2011, pp. 30–37.
7.
Zurück zum Zitat Shannon, C.E., Gallager, R.G., and Berlekamp, E.R., Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. I, II, Inform. Control, 1967, vol. 10, no. 1, pp. 65–103; no. 5, pp. 522–552.MathSciNetCrossRef Shannon, C.E., Gallager, R.G., and Berlekamp, E.R., Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. I, II, Inform. Control, 1967, vol. 10, no. 1, pp. 65–103; no. 5, pp. 522–552.MathSciNetCrossRef
8.
Zurück zum Zitat Gallager, R.G., Information Theory and Reliable Communication, New York: Wiley, 1968.MATH Gallager, R.G., Information Theory and Reliable Communication, New York: Wiley, 1968.MATH
9.
Zurück zum Zitat Fano, R.M., Transmission of Information: A Statistical Theory of Communications, New York: M.I.T. Press, 1961.CrossRef Fano, R.M., Transmission of Information: A Statistical Theory of Communications, New York: M.I.T. Press, 1961.CrossRef
10.
Zurück zum Zitat Haroutunian, E.A., Bounds for the Exponent of the Probability of Error for a Semicontinuous Memoryless Channel, Probl. Peredachi Inf., 1968, vol. 4, no. 4, pp. 37–48 [Probl. Inf. Transm. (Engl. Transl.), 1968, vol. 4, no. 4, pp. 29–39].MathSciNet Haroutunian, E.A., Bounds for the Exponent of the Probability of Error for a Semicontinuous Memoryless Channel, Probl. Peredachi Inf., 1968, vol. 4, no. 4, pp. 37–48 [Probl. Inf. Transm. (Engl. Transl.), 1968, vol. 4, no. 4, pp. 29–39].MathSciNet
11.
Zurück zum Zitat Omura, J.K., A Lower Bounding Method for Channel and Source Coding Probabilities, Inform. Control, 1975, vol. 27, no. 2, pp. 148–177.MathSciNetCrossRef Omura, J.K., A Lower Bounding Method for Channel and Source Coding Probabilities, Inform. Control, 1975, vol. 27, no. 2, pp. 148–177.MathSciNetCrossRef
12.
Zurück zum Zitat Csiszár, I. and Körner, J., Information Theory: Coding Theorems for Discrete Memoryless Systems, Cambridge, UK: Cambridge Univ. Press, 2011, 2nd ed.CrossRef Csiszár, I. and Körner, J., Information Theory: Coding Theorems for Discrete Memoryless Systems, Cambridge, UK: Cambridge Univ. Press, 2011, 2nd ed.CrossRef
13.
Zurück zum Zitat Altuğ, Y. and Wagner, A.B., Refinement of the Sphere-Packing Bound: Asymmetric Channels, IEEE Trans. Inform. Theory, 2014, vol. 60, no. 3, pp. 1592–1614.MathSciNetCrossRef Altuğ, Y. and Wagner, A.B., Refinement of the Sphere-Packing Bound: Asymmetric Channels, IEEE Trans. Inform. Theory, 2014, vol. 60, no. 3, pp. 1592–1614.MathSciNetCrossRef
14.
Zurück zum Zitat Nakiboğlu, B., A Simple Derivation of the Refined SPB for the Constant Composition Codes, in Proc. 2019 IEEE Int. Symp. on Information Theory (ISIT’2019), Paris, France, July 7–12, 2019, pp. 2659–2663. Nakiboğlu, B., A Simple Derivation of the Refined SPB for the Constant Composition Codes, in Proc. 2019 IEEE Int. Symp. on Information Theory (ISIT’2019), Paris, France, July 7–12, 2019, pp. 2659–2663.
15.
Zurück zum Zitat Wyner, A.D., Capacity and Error Exponent for the Direct Detection Photon Channel. II, IEEE Trans. Inform. Theory, 1988, vol. 34, no. 6, pp. 1462–1471.MathSciNetCrossRef Wyner, A.D., Capacity and Error Exponent for the Direct Detection Photon Channel. II, IEEE Trans. Inform. Theory, 1988, vol. 34, no. 6, pp. 1462–1471.MathSciNetCrossRef
16.
Zurück zum Zitat Burnashev, M.V. and Kutoyants, Yu.A., On the Sphere-Packing Bound, Capacity, and Similar Results for Poisson Channels, Probl. Peredachi Inf., 1999, vol. 35, no. 2, pp. 3–22 [Probl. Inf. Transm. (Engl. Transl.), 1999, vol. 35, no. 2, pp. 95–111].MathSciNetMATH Burnashev, M.V. and Kutoyants, Yu.A., On the Sphere-Packing Bound, Capacity, and Similar Results for Poisson Channels, Probl. Peredachi Inf., 1999, vol. 35, no. 2, pp. 3–22 [Probl. Inf. Transm. (Engl. Transl.), 1999, vol. 35, no. 2, pp. 95–111].MathSciNetMATH
17.
Zurück zum Zitat Shannon, C.E., Probability of Error for Optimal Codes in a Gaussian Channel, Bell Syst. Tech. J., 1959, vol. 38, no. 3, pp. 611–656.MathSciNetCrossRef Shannon, C.E., Probability of Error for Optimal Codes in a Gaussian Channel, Bell Syst. Tech. J., 1959, vol. 38, no. 3, pp. 611–656.MathSciNetCrossRef
21.
22.
Zurück zum Zitat Lancho, A., Östman, J., Durisi, G., Koch, T., and Vazquez-Vilar, G., Saddlepoint Approximations for Short-Packet Wireless Communications, IEEE Trans. Wireless Commun., 2020, vol. 19, no. 7, pp. 4831–4846.CrossRef Lancho, A., Östman, J., Durisi, G., Koch, T., and Vazquez-Vilar, G., Saddlepoint Approximations for Short-Packet Wireless Communications, IEEE Trans. Wireless Commun., 2020, vol. 19, no. 7, pp. 4831–4846.CrossRef
23.
Zurück zum Zitat Augustin, U., Error Estimates for Low Rate Codes, Z. Wahrsch. Verw. Gebiete, 1969, vol. 14, no. 1, pp. 61–88.MathSciNetCrossRef Augustin, U., Error Estimates for Low Rate Codes, Z. Wahrsch. Verw. Gebiete, 1969, vol. 14, no. 1, pp. 61–88.MathSciNetCrossRef
25.
Zurück zum Zitat Nakiboğlu, B., The Sphere Packing Bound via Augustin’s Method, IEEE Trans. Inform. Theory, 2019, vol. 65, no. 2, pp. 816–840.MathSciNetCrossRef Nakiboğlu, B., The Sphere Packing Bound via Augustin’s Method, IEEE Trans. Inform. Theory, 2019, vol. 65, no. 2, pp. 816–840.MathSciNetCrossRef
26.
Zurück zum Zitat Nakiboğlu, B., The Augustin Capacity and Center, Probl. Peredachi Inf., 2019, vol. 55, no. 4, pp. 3–51 [Probl. Inf. Transm. (Engl. Transl.), 2019, vol. 55, no. 4, pp. 299–342].MATH Nakiboğlu, B., The Augustin Capacity and Center, Probl. Peredachi Inf., 2019, vol. 55, no. 4, pp. 3–51 [Probl. Inf. Transm. (Engl. Transl.), 2019, vol. 55, no. 4, pp. 299–342].MATH
27.
Zurück zum Zitat Nakiboğlu, B., The Rényi Capacity and Center, IEEE Trans. Inform. Theory, 2019, vol. 65, no. 2, pp. 841–860; see also arXiv:1608.02424[cs.IT] (extended version).MathSciNetCrossRef Nakiboğlu, B., The Rényi Capacity and Center, IEEE Trans. Inform. Theory, 2019, vol. 65, no. 2, pp. 841–860; see also arXiv:1608.02424[cs.IT] (extended version).MathSciNetCrossRef
28.
Zurück zum Zitat Nakiboğlu, B., A Simple Derivation of the Refined Sphere Packing Bound under Certain Symmetry Hypotheses, Turkish J. Math., 2020, vol. 44, no. 3, pp. 919–948.MathSciNetCrossRef Nakiboğlu, B., A Simple Derivation of the Refined Sphere Packing Bound under Certain Symmetry Hypotheses, Turkish J. Math., 2020, vol. 44, no. 3, pp. 919–948.MathSciNetCrossRef
29.
Zurück zum Zitat Gallager, R.G., A Simple Derivation of the Coding Theorem and Some Applications, IEEE Trans. Inform. Theory, 1965, vol. 11, no. 1, pp. 3–18.MathSciNetCrossRef Gallager, R.G., A Simple Derivation of the Coding Theorem and Some Applications, IEEE Trans. Inform. Theory, 1965, vol. 11, no. 1, pp. 3–18.MathSciNetCrossRef
30.
Zurück zum Zitat Poltyrev, G.Sh., Random Coding Bounds for Discrete Memoryless Channels, Probl. Peredachi Inf., 1982, vol. 18, no. 1, pp. 12–26 [Probl. Inf. Transm. (Engl. Transl.), 1982, vol. 18, no. 1, pp. 9–21].MathSciNetMATH Poltyrev, G.Sh., Random Coding Bounds for Discrete Memoryless Channels, Probl. Peredachi Inf., 1982, vol. 18, no. 1, pp. 12–26 [Probl. Inf. Transm. (Engl. Transl.), 1982, vol. 18, no. 1, pp. 9–21].MathSciNetMATH
31.
Zurück zum Zitat Blahut, R.E., Hypothesis Testing and Information Theory, IEEE Trans. Inform. Theory, 1974, vol. 20, no. 4, pp. 405–417.MathSciNetCrossRef Blahut, R.E., Hypothesis Testing and Information Theory, IEEE Trans. Inform. Theory, 1974, vol. 20, no. 4, pp. 405–417.MathSciNetCrossRef
32.
Zurück zum Zitat Blahut, R.E., Information Bounds of the Fano–Kullback Type, IEEE Trans. Inform. Theory, 1976, vol. 22, no. 4, pp. 410–421.MathSciNetCrossRef Blahut, R.E., Information Bounds of the Fano–Kullback Type, IEEE Trans. Inform. Theory, 1976, vol. 22, no. 4, pp. 410–421.MathSciNetCrossRef
33.
Zurück zum Zitat Blahut, R.E., Principles and Practice of Information Theory, Reading, MA: Addison-Wesley, 1987.MATH Blahut, R.E., Principles and Practice of Information Theory, Reading, MA: Addison-Wesley, 1987.MATH
34.
Zurück zum Zitat Vazquez-Vilar, G., Martinez, A., and Guillén i Fàbregas, A., A Derivation of the Cost-Constrained Sphere-Packing Exponent, in Proc. 2015 IEEE Int. Symp. on Information Theory (ISIT’2015), Hong Kong, China, June 14–19, 2015, pp. 929–933. Vazquez-Vilar, G., Martinez, A., and Guillén i Fàbregas, A., A Derivation of the Cost-Constrained Sphere-Packing Exponent, in Proc. 2015 IEEE Int. Symp. on Information Theory (ISIT’2015), Hong Kong, China, June 14–19, 2015, pp. 929–933.
35.
Zurück zum Zitat Dudley, R.M., Real Analysis and Probability, Cambridge: Cambridge Univ. Press, 2002.CrossRef Dudley, R.M., Real Analysis and Probability, Cambridge: Cambridge Univ. Press, 2002.CrossRef
36.
Zurück zum Zitat van Erven, T. and Harremoës, P., Rényi Divergence and Kullback–Leibler Divergence, IEEE Trans. Inform. Theory, 2014, vol. 60, no. 7, pp. 3797–3820.MathSciNetCrossRef van Erven, T. and Harremoës, P., Rényi Divergence and Kullback–Leibler Divergence, IEEE Trans. Inform. Theory, 2014, vol. 60, no. 7, pp. 3797–3820.MathSciNetCrossRef
37.
Zurück zum Zitat Rudin, W., Principles of Mathematical Analysis, New York: McGraw-Hill, 1976, 3rd ed.MATH Rudin, W., Principles of Mathematical Analysis, New York: McGraw-Hill, 1976, 3rd ed.MATH
40.
Zurück zum Zitat Dalai, M., Lower Bounds on the Probability of Error for Classical and Classical-Quantum Channels, IEEE Trans. Inform. Theory, 2013, vol. 59, no. 12, pp. 8027–8056.MathSciNetCrossRef Dalai, M., Lower Bounds on the Probability of Error for Classical and Classical-Quantum Channels, IEEE Trans. Inform. Theory, 2013, vol. 59, no. 12, pp. 8027–8056.MathSciNetCrossRef
41.
Zurück zum Zitat Dalai, M., Some Remarks on Classical and Classical-Quantum Sphere Packing Bounds: Rényi vs. Kullback–Leibler, Entropy, 2017, vol. 19, no. 7, p. 355 (11 pp.).MathSciNetCrossRef Dalai, M., Some Remarks on Classical and Classical-Quantum Sphere Packing Bounds: Rényi vs. Kullback–Leibler, Entropy, 2017, vol. 19, no. 7, p. 355 (11 pp.).MathSciNetCrossRef
42.
Zurück zum Zitat Dalai, M. and Winter, A., Constant Compositions in the Sphere Packing Bound for Classical-Quantum Channels, IEEE Trans. Inform. Theory, 2017, vol. 63, no. 9, pp. 5603–5617.MathSciNetMATH Dalai, M. and Winter, A., Constant Compositions in the Sphere Packing Bound for Classical-Quantum Channels, IEEE Trans. Inform. Theory, 2017, vol. 63, no. 9, pp. 5603–5617.MathSciNetMATH
43.
Zurück zum Zitat Cheng, H.-C. and Hsieh, M.H., Moderate Deviation Analysis for Classical-Quantum Channels and Quantum Hypothesis Testing, IEEE Trans. Inform. Theory, 2018, vol. 64, no. 2, pp. 1385–1403.MathSciNetCrossRef Cheng, H.-C. and Hsieh, M.H., Moderate Deviation Analysis for Classical-Quantum Channels and Quantum Hypothesis Testing, IEEE Trans. Inform. Theory, 2018, vol. 64, no. 2, pp. 1385–1403.MathSciNetCrossRef
44.
Zurück zum Zitat Cheng, H.-C., Hsieh, M.H., and Tomamichel, M., Quantum Sphere-Packing Bounds with Polynomial Prefactors, IEEE Trans. Inform. Theory, 2019, vol. 65, no. 5, pp. 2872–2898.MathSciNetCrossRef Cheng, H.-C., Hsieh, M.H., and Tomamichel, M., Quantum Sphere-Packing Bounds with Polynomial Prefactors, IEEE Trans. Inform. Theory, 2019, vol. 65, no. 5, pp. 2872–2898.MathSciNetCrossRef
45.
Zurück zum Zitat Altuğ, Y. and Wagner, A.B., Refinement of the Random Coding Bound, IEEE Trans. Inform. Theory, 2014, vol. 60, no. 10, pp. 6005–6023.MathSciNetCrossRef Altuğ, Y. and Wagner, A.B., Refinement of the Random Coding Bound, IEEE Trans. Inform. Theory, 2014, vol. 60, no. 10, pp. 6005–6023.MathSciNetCrossRef
46.
Zurück zum Zitat Scarlett, J., Martinez, A., and Guillén i Fàbregas, A., Mismatched Decoding: Error Exponents, Second-Order Rates and Saddlepoint Approximations, IEEE Trans. Inform. Theory, 2014, vol. 60, no. 5, pp. 2647–2666.MathSciNetCrossRef Scarlett, J., Martinez, A., and Guillén i Fàbregas, A., Mismatched Decoding: Error Exponents, Second-Order Rates and Saddlepoint Approximations, IEEE Trans. Inform. Theory, 2014, vol. 60, no. 5, pp. 2647–2666.MathSciNetCrossRef
47.
Zurück zum Zitat Honda, J., Exact Asymptotics for the Random Coding Error Probability, in Proc. 2015 IEEE Int. Symp. on Information Theory (ISIT’2015), Hong Kong, China, June 14–19, 2015, pp. 91–95. Honda, J., Exact Asymptotics for the Random Coding Error Probability, in Proc. 2015 IEEE Int. Symp. on Information Theory (ISIT’2015), Hong Kong, China, June 14–19, 2015, pp. 91–95.
48.
Zurück zum Zitat Burnashev, M.V. and Holevo, A.S., On the Reliability Function for a Quantum Communication Channel, Probl. Peredachi Inf., 1998, vol. 34, no. 2, pp. 3–15 [Probl. Inf. Transm. (Engl. Transl.), 1998, vol. 34, no. 2, pp. 97–107].MathSciNetMATH Burnashev, M.V. and Holevo, A.S., On the Reliability Function for a Quantum Communication Channel, Probl. Peredachi Inf., 1998, vol. 34, no. 2, pp. 3–15 [Probl. Inf. Transm. (Engl. Transl.), 1998, vol. 34, no. 2, pp. 97–107].MathSciNetMATH
49.
Zurück zum Zitat Telatar, E., Capacity of Multi-antenna Gaussian Channels, Eur. Trans. Telecommun., 1999, vol. 10, no. 6, pp. 585–595.MathSciNetCrossRef Telatar, E., Capacity of Multi-antenna Gaussian Channels, Eur. Trans. Telecommun., 1999, vol. 10, no. 6, pp. 585–595.MathSciNetCrossRef
50.
Zurück zum Zitat Vu, M., MISO Capacity with Per-Antenna Power Constraint, IEEE Trans. Commun., 2011, vol. 59, no. 5, pp. 1268–1274.CrossRef Vu, M., MISO Capacity with Per-Antenna Power Constraint, IEEE Trans. Commun., 2011, vol. 59, no. 5, pp. 1268–1274.CrossRef
51.
Zurück zum Zitat Cao, P.L., Oechtering, T.J., Schaefer, R.F., and Skoglund, M., Optimal Transmit Strategy for MISO Channels with Joint Sum and Per-Antenna Power Constraints, IEEE Trans. Signal Process., 2016, vol. 64, no. 16, pp. 4296–4306.MathSciNetCrossRef Cao, P.L., Oechtering, T.J., Schaefer, R.F., and Skoglund, M., Optimal Transmit Strategy for MISO Channels with Joint Sum and Per-Antenna Power Constraints, IEEE Trans. Signal Process., 2016, vol. 64, no. 16, pp. 4296–4306.MathSciNetCrossRef
52.
Zurück zum Zitat Loyka, S., The Capacity of Gaussian MIMO Channels under Total and Per-Antenna Power Constraints, IEEE Trans. Commun., 2017, vol. 65, no. 3, pp. 1035–1043.CrossRef Loyka, S., The Capacity of Gaussian MIMO Channels under Total and Per-Antenna Power Constraints, IEEE Trans. Commun., 2017, vol. 65, no. 3, pp. 1035–1043.CrossRef
53.
Zurück zum Zitat Cheng, H.-C. and Nakiboğlu, B., Refined Strong Converse for the Constant Composition Codes, in Proc. 2020 IEEE Int. Symp. on Information Theory (ISIT’2020), Los Angeles, CA, June 21–26, 2020, pp. 2149–2154. Cheng, H.-C. and Nakiboğlu, B., Refined Strong Converse for the Constant Composition Codes, in Proc. 2020 IEEE Int. Symp. on Information Theory (ISIT’2020), Los Angeles, CA, June 21–26, 2020, pp. 2149–2154.
54.
Zurück zum Zitat Yang, W., Fading Channels: Capacity and Channel Coding Rate in the Finite-Blocklength Regime, PhD Thesis, Communication Systems Group, Dept. of Signals and Systems, Chalmers Univ. of Technology, Gothenburg, Sweden, 2015. Yang, W., Fading Channels: Capacity and Channel Coding Rate in the Finite-Blocklength Regime, PhD Thesis, Communication Systems Group, Dept. of Signals and Systems, Chalmers Univ. of Technology, Gothenburg, Sweden, 2015.
Metadaten
Titel
The Sphere Packing Bound for Memoryless Channels
verfasst von
B. Nakiboğlu
Publikationsdatum
01.07.2020
Verlag
Pleiades Publishing
Erschienen in
Problems of Information Transmission / Ausgabe 3/2020
Print ISSN: 0032-9460
Elektronische ISSN: 1608-3253
DOI
https://doi.org/10.1134/S0032946020030011

Weitere Artikel der Ausgabe 3/2020

Problems of Information Transmission 3/2020 Zur Ausgabe

Neuer Inhalt