Skip to main content
Erschienen in: BIT Numerical Mathematics 1/2019

06.10.2018

The time-fractional diffusion inverse problem subject to an extra measurement by a local discontinuous Galerkin method

verfasst von: Samaneh Qasemi, Davood Rostamy, Nazdar Abdollahi

Erschienen in: BIT Numerical Mathematics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper deals with an inverse problem of identifying a space dependent coefficient in a time-fractional diffusion equation on a finite domain with final observation. The existence and uniqueness of this inverse problem are proved. A numerical scheme is proposed to solve the problem. The main idea of the proposed scheme is approximating the time fractional derivative by Diethelm’s quadrature formula and use the local discontinuous Galerkin method in space variable. Also, an error estimate for this problem is presented. Finally, two numerical example is studied to demonstrate the accuracy and efficiency of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Al-Refai, M., Luchko, Y.: Maximum principles for the fractional diffusion equations with the Riemann–Liouville fractional derivative and their applications. Fract. Calc. Appl. Anal. 17, 483–498 (2014)MathSciNetCrossRefMATH Al-Refai, M., Luchko, Y.: Maximum principles for the fractional diffusion equations with the Riemann–Liouville fractional derivative and their applications. Fract. Calc. Appl. Anal. 17, 483–498 (2014)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Discontinuous Galerkin methods for elliptic problems. In: Discontinuous Galerkin Methods: Theory, Computation and Applications, vol. 11, pp. 89–101 (2000) Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Discontinuous Galerkin methods for elliptic problems. In: Discontinuous Galerkin Methods: Theory, Computation and Applications, vol. 11, pp. 89–101 (2000)
3.
Zurück zum Zitat Asadzadeh, M., Schatz, A., Wendland, W.: Asymptotic error expansions for the finite element method for second order elliptic problems in \({ R} _N, N>=2\), I: local interior expansions. SIAM J. Numer. Anal. 48, 2000–2017 (2010)MathSciNetCrossRefMATH Asadzadeh, M., Schatz, A., Wendland, W.: Asymptotic error expansions for the finite element method for second order elliptic problems in \({ R} _N, N>=2\), I: local interior expansions. SIAM J. Numer. Anal. 48, 2000–2017 (2010)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Asadzadeh, M., Beilina, L.: A posteriori error analysis in a globally convergent numerical method for a hyperbolic coefficient inverse. Inverse Probl. 26, 115–127 (2010)CrossRefMATH Asadzadeh, M., Beilina, L.: A posteriori error analysis in a globally convergent numerical method for a hyperbolic coefficient inverse. Inverse Probl. 26, 115–127 (2010)CrossRefMATH
5.
Zurück zum Zitat Bagley, R., Torvik, P.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)CrossRefMATH Bagley, R., Torvik, P.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)CrossRefMATH
6.
Zurück zum Zitat Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)MathSciNetCrossRefMATH Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Brunner, H., Han, H., Yin, D.: The maximum principle for time-fractional diffusion equations and its application. Numer. Func. Anal. Optim. 36, 1307–1321 (2015)MathSciNetCrossRefMATH Brunner, H., Han, H., Yin, D.: The maximum principle for time-fractional diffusion equations and its application. Numer. Func. Anal. Optim. 36, 1307–1321 (2015)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Cannon, J.R., Yin, H.-M.: A class of nonlinear non-classical parabolic equations. J. Differ. Equ. 79, 266–288 (1989)CrossRefMATH Cannon, J.R., Yin, H.-M.: A class of nonlinear non-classical parabolic equations. J. Differ. Equ. 79, 266–288 (1989)CrossRefMATH
9.
Zurück zum Zitat Cannon, J.R., Yin, H.-M.: Numerical solutions of some parabolic inverse problems. Numer. Methods Partial Differ. Equ. 6, 177–191 (1990)MathSciNetCrossRefMATH Cannon, J.R., Yin, H.-M.: Numerical solutions of some parabolic inverse problems. Numer. Methods Partial Differ. Equ. 6, 177–191 (1990)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Castillo, P.: An optimal estimate for the local discontinuous Galerkin method. In: Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 285–290 (2000) Castillo, P.: An optimal estimate for the local discontinuous Galerkin method. In: Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 285–290 (2000)
11.
Zurück zum Zitat Chen, Q., Liu, J.J.: Solving an inverse parabolic problem by optimization from final measurement data. J. Comput. Appl. Math. 193, 183–203 (2006)MathSciNetCrossRefMATH Chen, Q., Liu, J.J.: Solving an inverse parabolic problem by optimization from final measurement data. J. Comput. Appl. Math. 193, 183–203 (2006)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Cheng, J., Nakagawa, J., Yamamoto, M., Yamazaki, T.: Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Probl. 25(11), 551–562 (2009)MathSciNetCrossRefMATH Cheng, J., Nakagawa, J., Yamamoto, M., Yamazaki, T.: Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Probl. 25(11), 551–562 (2009)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time dependent converction-diffusion systems. SIAM J. Numer. Anal. 35, 2440–246 (1998)MathSciNetCrossRefMATH Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time dependent converction-diffusion systems. SIAM J. Numer. Anal. 35, 2440–246 (1998)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39(1), 264–285 (2001)MathSciNetCrossRefMATH Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39(1), 264–285 (2001)MathSciNetCrossRefMATH
15.
16.
Zurück zum Zitat Diethelm, K.: Numerical Approximation for Finite-Part Integrals with Generalized Compound Quadrature Formulae. Hildesheimer Informatikberichte (1995) Diethelm, K.: Numerical Approximation for Finite-Part Integrals with Generalized Compound Quadrature Formulae. Hildesheimer Informatikberichte (1995)
17.
Zurück zum Zitat Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5, 1–6 (1997)MathSciNetMATH Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5, 1–6 (1997)MathSciNetMATH
18.
Zurück zum Zitat Douglas, J., Dupont, J.T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. Lecture Notes in Physics, vol. 58. Springer, Berlin (1976) Douglas, J., Dupont, J.T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. Lecture Notes in Physics, vol. 58. Springer, Berlin (1976)
19.
Zurück zum Zitat Furati, KhM, Iyiola, O., Kirane, M.: An inverse problem for a generalized fractional diffusion. Appl. Math. Comput. 249, 24–31 (2014)MathSciNetMATH Furati, KhM, Iyiola, O., Kirane, M.: An inverse problem for a generalized fractional diffusion. Appl. Math. Comput. 249, 24–31 (2014)MathSciNetMATH
20.
Zurück zum Zitat Georgoulis, E.H.: hp-version interior penalty discontinuous Galerkin finite element methods on anisotropic meshes. Int. J. Numer. Anal. Model. 3, 52–79 (2006)MathSciNetMATH Georgoulis, E.H.: hp-version interior penalty discontinuous Galerkin finite element methods on anisotropic meshes. Int. J. Numer. Anal. Model. 3, 52–79 (2006)MathSciNetMATH
21.
Zurück zum Zitat Guo, B., Pu, X., Huang, F.: Fractional Partial Differential Equations and Their Numerical Solutions. World Scientific, Singapore (2015)CrossRefMATH Guo, B., Pu, X., Huang, F.: Fractional Partial Differential Equations and Their Numerical Solutions. World Scientific, Singapore (2015)CrossRefMATH
23.
Zurück zum Zitat Ismailov, M.I., Çiçek, M.: Inverse Source Problem for a time-fractional diffusion equation with nonlocal boundary conditions. Appl. Math. Model. 40, 4891–4899 (2016)MathSciNetCrossRef Ismailov, M.I., Çiçek, M.: Inverse Source Problem for a time-fractional diffusion equation with nonlocal boundary conditions. Appl. Math. Model. 40, 4891–4899 (2016)MathSciNetCrossRef
24.
Zurück zum Zitat Jin, B., Rundell, W.: An inverse problem for a one-dimensional time-fractional diffusion problem. Inverse Probl. 28(7), 234–245 (2012)MathSciNetCrossRefMATH Jin, B., Rundell, W.: An inverse problem for a one-dimensional time-fractional diffusion problem. Inverse Probl. 28(7), 234–245 (2012)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Larsson, S., Racheva, M., Saedpanah, F.: Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity. Comput. Methods Appl. Mech. Eng. 283, 196–209 (2015)MathSciNetCrossRefMATH Larsson, S., Racheva, M., Saedpanah, F.: Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity. Comput. Methods Appl. Mech. Eng. 283, 196–209 (2015)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Li, X.J., Xu, C.J.: Existence and uniqeness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016–1051 (2010)MathSciNetMATH Li, X.J., Xu, C.J.: Existence and uniqeness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016–1051 (2010)MathSciNetMATH
27.
28.
Zurück zum Zitat Liu, L.L., Yamamoto, M., Yan, L.: On the uniqueness and reconstruction for an inverse problem of the fractional diffusion process. Appl. Numer. Math. 87, 1–19 (2015)MathSciNetCrossRefMATH Liu, L.L., Yamamoto, M., Yan, L.: On the uniqueness and reconstruction for an inverse problem of the fractional diffusion process. Appl. Numer. Math. 87, 1–19 (2015)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Luchko, Y.: Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351, 218–223 (2009)MathSciNetCrossRefMATH Luchko, Y.: Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351, 218–223 (2009)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37, 161–208 (2004)MathSciNetCrossRefMATH Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37, 161–208 (2004)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Metzler, R., Klafter, J.: The random walks guide to an omalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)CrossRefMATH Metzler, R., Klafter, J.: The random walks guide to an omalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)CrossRefMATH
32.
Zurück zum Zitat Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138–1145 (2008)MathSciNetCrossRefMATH Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138–1145 (2008)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)MATH Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)MATH
35.
Zurück zum Zitat Prilepko, A.I., Orlovsky, D.G., Vasian, I.A.: Methods for Solving Inverse Problems in Mathematical Physics. Marcel Dekker Inc., New York (2000) Prilepko, A.I., Orlovsky, D.G., Vasian, I.A.: Methods for Solving Inverse Problems in Mathematical Physics. Marcel Dekker Inc., New York (2000)
36.
Zurück zum Zitat Podlubny, I.: Fractiorlal Differential Eqnations. Academic Press, New York (1999) Podlubny, I.: Fractiorlal Differential Eqnations. Academic Press, New York (1999)
37.
Zurück zum Zitat Rostamy, D., Abdollahi, N.: Gegenbauer cardinal functions for the inverse source parabolic problem with a time-fractional diffusion equation. J. Comput. Theor. Transp. 46, 307–329 (2017)MathSciNetCrossRef Rostamy, D., Abdollahi, N.: Gegenbauer cardinal functions for the inverse source parabolic problem with a time-fractional diffusion equation. J. Comput. Theor. Transp. 46, 307–329 (2017)MathSciNetCrossRef
38.
Zurück zum Zitat Rostamy, D.: The new streamline diffusion for the 3D coupled Schrodinger equations with a cross-phase modulation. ANZIAM J. 55, 51–78 (2013)MathSciNetCrossRefMATH Rostamy, D.: The new streamline diffusion for the 3D coupled Schrodinger equations with a cross-phase modulation. ANZIAM J. 55, 51–78 (2013)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Rostamy, D., Qasemi, S.: Discontinuous Petrov-Galerkin and Bernstein-Legendre polynomials method for solving fractional damped heat- and wave-like equations. Transp. Theory Stat. Phys. 44, 1–23 (2015)MathSciNet Rostamy, D., Qasemi, S.: Discontinuous Petrov-Galerkin and Bernstein-Legendre polynomials method for solving fractional damped heat- and wave-like equations. Transp. Theory Stat. Phys. 44, 1–23 (2015)MathSciNet
40.
Zurück zum Zitat Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A Stat. Mech. Appl. 284, 376–84 (2000)MathSciNetCrossRef Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A Stat. Mech. Appl. 284, 376–84 (2000)MathSciNetCrossRef
41.
Zurück zum Zitat Shao, L., Feng, X., He, Y.: The local discontinuous Galerkin finite element method for Burgers equation. Math. Comput. Model. 54, 2943–2954 (2011)MathSciNetCrossRefMATH Shao, L., Feng, X., He, Y.: The local discontinuous Galerkin finite element method for Burgers equation. Math. Comput. Model. 54, 2943–2954 (2011)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Tatar, S., Ulusoy, S.: An inverse source problem for a one-dimensional space-time fractional diffusion equation. Appl. Anal. 94, 2233–2244 (2015)MathSciNetCrossRefMATH Tatar, S., Ulusoy, S.: An inverse source problem for a one-dimensional space-time fractional diffusion equation. Appl. Anal. 94, 2233–2244 (2015)MathSciNetCrossRefMATH
45.
Zurück zum Zitat Wei, T., Zhang, Z.Q.: Reconstruction of a time- dependent source term in a time-fractional diffusion equation. Eng. Anal. Bound. Elem. 37, 23–31 (2013)MathSciNetCrossRefMATH Wei, T., Zhang, Z.Q.: Reconstruction of a time- dependent source term in a time-fractional diffusion equation. Eng. Anal. Bound. Elem. 37, 23–31 (2013)MathSciNetCrossRefMATH
46.
Zurück zum Zitat Wei, T., Wang, J.: A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. Appl. Numer. Math. 78, 95–111 (2014)MathSciNetCrossRefMATH Wei, T., Wang, J.: A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. Appl. Numer. Math. 78, 95–111 (2014)MathSciNetCrossRefMATH
47.
Zurück zum Zitat Wei, T., Li, X.L., Li, Y.S.: An inverse time-dependent source problem for a time-fractional diffusion equation. Ineverse Probl. 32, 085003 (2016)MathSciNetCrossRefMATH Wei, T., Li, X.L., Li, Y.S.: An inverse time-dependent source problem for a time-fractional diffusion equation. Ineverse Probl. 32, 085003 (2016)MathSciNetCrossRefMATH
48.
Zurück zum Zitat Wei, T., Zhang, Z.Q.: Robin coefficient identification for a time-fractional diffusion equation. Inverse Probl. Sci. Eng. 24, 647–666 (2016)MathSciNetCrossRefMATH Wei, T., Zhang, Z.Q.: Robin coefficient identification for a time-fractional diffusion equation. Inverse Probl. Sci. Eng. 24, 647–666 (2016)MathSciNetCrossRefMATH
49.
Zurück zum Zitat Wu, B., Wu, S.: Existence and uniqueness of an inverse source problem for a fractional integrodifferential equation. Comput. Math. Appl. 68, 1123–1136 (2014)MathSciNetCrossRefMATH Wu, B., Wu, S.: Existence and uniqueness of an inverse source problem for a fractional integrodifferential equation. Comput. Math. Appl. 68, 1123–1136 (2014)MathSciNetCrossRefMATH
50.
Zurück zum Zitat Xu, Y., Shu, C.W.: Local discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)MathSciNetCrossRefMATH Xu, Y., Shu, C.W.: Local discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)MathSciNetCrossRefMATH
51.
Zurück zum Zitat Yeganeh, S., Mokhtari, R., Hesthaven, J.S.: Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method. BIT Numer. Math. 57, 685–707 (2017)MathSciNetCrossRefMATH Yeganeh, S., Mokhtari, R., Hesthaven, J.S.: Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method. BIT Numer. Math. 57, 685–707 (2017)MathSciNetCrossRefMATH
52.
Zurück zum Zitat Zhang, Y., Meerschaert, M.M., Baeumer, B.: Particle tracking for time-fractional diffusion. Phys. Rev. E. 78, 1–7 (2008)MATH Zhang, Y., Meerschaert, M.M., Baeumer, B.: Particle tracking for time-fractional diffusion. Phys. Rev. E. 78, 1–7 (2008)MATH
Metadaten
Titel
The time-fractional diffusion inverse problem subject to an extra measurement by a local discontinuous Galerkin method
verfasst von
Samaneh Qasemi
Davood Rostamy
Nazdar Abdollahi
Publikationsdatum
06.10.2018
Verlag
Springer Netherlands
Erschienen in
BIT Numerical Mathematics / Ausgabe 1/2019
Print ISSN: 0006-3835
Elektronische ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-018-0731-z

Weitere Artikel der Ausgabe 1/2019

BIT Numerical Mathematics 1/2019 Zur Ausgabe