Skip to main content

2020 | OriginalPaper | Buchkapitel

4. Theoretical Analysis of Temperature-Dependent Electrical Parameters of Si Solar Cell Integrated with Carbon-Based Thermal Cooling Layer

verfasst von : Vivek Kumar, Hrishikesh Dhasmana, Apurv Yadav, Amit Kumar, Abhishek Verma, P. K. Bhatnagar, Vinod Kumar Jain

Erschienen in: Advances in Solar Power Generation and Energy Harvesting

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The heating effect in solar panels under solar irradiation is a major problem. The elevated solar cell temperature causes a decrease in its efficiency. Therefore, the research community is driven towards enhancing the working efficiency of solar panel by thermal cooling techniques. In this direction, activated carbon-based cooling layer beneath solar cell has been proposed and experimental optimization has led to enhance working efficiency by reducing the working temperature of the device from 88 to 69.5 °C. This paper presents a theoretical investigation of experimentally observed temperature-dependent solar cell parameters, such as open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF) and efficiency (η), of our previous study. The reverse saturation current density (Jo) is a critical diode parameter which ultimately determines the temperature-dependent performance of the solar cell. In this work, constant factor ‘C’ value of 51.43 mA-cm−2K−3 is obtained for the calculation of reverse saturation current density in the temperature range from 273 to 373 K, and accordingly, solar cell output parameters are calculated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.M. Sze, Physics of Semiconductor Devices (Wiley & Sons, New York, 1981) S.M. Sze, Physics of Semiconductor Devices (Wiley & Sons, New York, 1981)
2.
Zurück zum Zitat C. Hu, R.M. White, Solar Cells (Mc Graw-Hill, NewYork, 1983) C. Hu, R.M. White, Solar Cells (Mc Graw-Hill, NewYork, 1983)
3.
Zurück zum Zitat S. Armstrong, W.G. Hurley, A thermal model for photovoltaic panels under varying atmospheric conditions. Appl. Therm. Eng. 30, 1488–1495 (2010)CrossRef S. Armstrong, W.G. Hurley, A thermal model for photovoltaic panels under varying atmospheric conditions. Appl. Therm. Eng. 30, 1488–1495 (2010)CrossRef
4.
Zurück zum Zitat G. Landis, R. Rafaelle, D. Merritt, High temperature solar cell development, in 19th European Photovoltaic Science and Engineering Conference, Paris, France, 7–11 June 2004 G. Landis, R. Rafaelle, D. Merritt, High temperature solar cell development, in 19th European Photovoltaic Science and Engineering Conference, Paris, France, 7–11 June 2004
5.
Zurück zum Zitat B.H. Khan, Non-Conventional Energy Resources (Tata McGraw-Hill Publishing Company Limited, New Delhi, 2004) B.H. Khan, Non-Conventional Energy Resources (Tata McGraw-Hill Publishing Company Limited, New Delhi, 2004)
6.
Zurück zum Zitat J.C.C. Fan, Theoretical temperature dependence of solar cell parameters. Solar Cells 17, 309–315 (1986)CrossRef J.C.C. Fan, Theoretical temperature dependence of solar cell parameters. Solar Cells 17, 309–315 (1986)CrossRef
7.
Zurück zum Zitat P. Singh, S.N. Singh, M. Lal, M. Husain, Temperature dependence of I-V characteristics and performance parameters of silicon solar cell. Sol. Energy Mater. Sol. Cells 92, 1611–1616 (2008)CrossRef P. Singh, S.N. Singh, M. Lal, M. Husain, Temperature dependence of I-V characteristics and performance parameters of silicon solar cell. Sol. Energy Mater. Sol. Cells 92, 1611–1616 (2008)CrossRef
8.
Zurück zum Zitat E. Skoplaki, J.A. Palyvos, On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol. Energy 83, 614–624 (2009)CrossRef E. Skoplaki, J.A. Palyvos, On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol. Energy 83, 614–624 (2009)CrossRef
9.
Zurück zum Zitat M. Green, Solar Cells: Operating Principles, Technology and System Applications. The University of New South Wales, Sydney (1998) M. Green, Solar Cells: Operating Principles, Technology and System Applications. The University of New South Wales, Sydney (1998)
10.
Zurück zum Zitat G.H. Russell, Uniform surface temperature heat pipe and method of using the same. US Patent no. US4320246 (1982) G.H. Russell, Uniform surface temperature heat pipe and method of using the same. US Patent no. US4320246 (1982)
11.
Zurück zum Zitat J. Barrau, A. Perona, A. Dolletb et al., Outdoor test of a hybrid jet impingement/micro-channel cooling device for densely packed concentrated photovoltaic cells. Sol. Energy 107, 113–121 (2014)CrossRef J. Barrau, A. Perona, A. Dolletb et al., Outdoor test of a hybrid jet impingement/micro-channel cooling device for densely packed concentrated photovoltaic cells. Sol. Energy 107, 113–121 (2014)CrossRef
12.
Zurück zum Zitat A.N. Kane, V. Verma, Performance enhancement of building integrated photovoltaic module using thermoelectric cooling. Int. J. Renew. Energy Res. 3(2), 320–324 (2013) A.N. Kane, V. Verma, Performance enhancement of building integrated photovoltaic module using thermoelectric cooling. Int. J. Renew. Energy Res. 3(2), 320–324 (2013)
13.
Zurück zum Zitat U. Stritih, Increasing the efficiency of PV panel with the use of PCM. Renew. Energy 97, 671–679 (2016)CrossRef U. Stritih, Increasing the efficiency of PV panel with the use of PCM. Renew. Energy 97, 671–679 (2016)CrossRef
14.
Zurück zum Zitat N. Amrizal, D. Chemisana, J.I. Rosell, Hybrid photovoltaic-thermal solar collectors dynamic modeling. Appl. Energy 101, 797–807 (2013)CrossRef N. Amrizal, D. Chemisana, J.I. Rosell, Hybrid photovoltaic-thermal solar collectors dynamic modeling. Appl. Energy 101, 797–807 (2013)CrossRef
15.
Zurück zum Zitat K.A. Moharram, M.S. Abd-Elhady, H.A. Kandil et al., Enhancing the performance of photovoltaic panels by water cooling. Ain Shams Eng. J. 4(4), 869–877 (2013)CrossRef K.A. Moharram, M.S. Abd-Elhady, H.A. Kandil et al., Enhancing the performance of photovoltaic panels by water cooling. Ain Shams Eng. J. 4(4), 869–877 (2013)CrossRef
16.
Zurück zum Zitat V. Kumar, A. Kumar, H. Dhasmana, A. Verma, P.K. Bhatnagar, V.K. Jain, Efficiency enhancement of silicon solar cells using highly porous thermal cooling layer. Energy Environ. 0958305X18781897 (2018) V. Kumar, A. Kumar, H. Dhasmana, A. Verma, P.K. Bhatnagar, V.K. Jain, Efficiency enhancement of silicon solar cells using highly porous thermal cooling layer. Energy Environ. 0958305X18781897 (2018)
17.
Zurück zum Zitat Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 34, 149–154 (1967)CrossRef Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 34, 149–154 (1967)CrossRef
18.
Zurück zum Zitat R. Passler, Parameter sets due to fittings of the temperature dependencies of fundamental band gaps in semiconductors. Phys. Status Solidi (b) 216, 975–1007 (1999)CrossRef R. Passler, Parameter sets due to fittings of the temperature dependencies of fundamental band gaps in semiconductors. Phys. Status Solidi (b) 216, 975–1007 (1999)CrossRef
19.
Zurück zum Zitat P. Singh, N.M. Ravindra, Temperature dependence of solar cell performance—an analysis. Sol. Energy Mater. Sol. Cells 101, 36–45 (2012)CrossRef P. Singh, N.M. Ravindra, Temperature dependence of solar cell performance—an analysis. Sol. Energy Mater. Sol. Cells 101, 36–45 (2012)CrossRef
20.
Zurück zum Zitat M.E. Nell, A.M. Barnett, The spectral p–n junction model for tandem solar-cell design. IEEE Trans. Electron Dev. 24, 257–266 (1987)CrossRef M.E. Nell, A.M. Barnett, The spectral p–n junction model for tandem solar-cell design. IEEE Trans. Electron Dev. 24, 257–266 (1987)CrossRef
21.
Zurück zum Zitat M.A. Green, Solar Cells (Prentice-Hall, Englewood Cliffs, NJ, 1982) M.A. Green, Solar Cells (Prentice-Hall, Englewood Cliffs, NJ, 1982)
Metadaten
Titel
Theoretical Analysis of Temperature-Dependent Electrical Parameters of Si Solar Cell Integrated with Carbon-Based Thermal Cooling Layer
verfasst von
Vivek Kumar
Hrishikesh Dhasmana
Apurv Yadav
Amit Kumar
Abhishek Verma
P. K. Bhatnagar
Vinod Kumar Jain
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-3635-9_4