Skip to main content
Erschienen in: Journal of Materials Science 16/2015

01.08.2015 | Original Paper

Thermal and electrical conductivity in Al–Si/Cu/Fe/Mg binary and ternary Al alloys

verfasst von: J. K. Chen, H. Y. Hung, C. F. Wang, N. K. Tang

Erschienen in: Journal of Materials Science | Ausgabe 16/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study investigated 30Al–Si, Al–Cu, Al–Fe, Al–Mg, Al–10Si–Cu, Al–10Si–Fe, and Al–10Si–Mg binary and ternary Al alloys, which are among the most commonly used commercial alloys. The thermal and electrical conductivity of the gravity castings of these alloys were measured. The results indicated that when 1 wt% Si, Cu, or Fe was mixed with commercial Al with 99.8 % purity, the thermal conductivity decreased from 213.5 Wm−1 K−1 to approximately 190–210 Wm−1 K−1. The thermal conductivity remained at a nearly constant level of 154–157 Wm−1 K−1 when the Si concentration exceeded 6 wt% in the Al–Si alloys. Regarding the Al–Mg alloys, the thermal conductivity did not change when the concentration of Mg was increased to 1 wt%. When the concentration of Mg exceeded 1 wt%, the thermal conductivity decreased greatly from 212.1 Wm−1 K−1 in the Al–1wt%Mg to 124.1 Wm−1 K−1 in the Al–5wt%Mg. This decrease occurred because the Mg-rich phase continuously impeded heat transfer at the grain boundaries. For the ternary Al alloys, when 0–1 wt% Fe or Cu was added to Al–10Si, the thermal conductivity increased slightly from 154 Wm−1 K−1 in Al–10Si to 162.7 Wm−1 K−1. The increase was due to the inclusion of Fe, which led to the formation of an Al x Fe y Si phase, reducing the solutes in the matrix phase. When the composition, morphology, amount, and distribution of all precipitates along with the matrix phase were taken into account, the effective medium approximations accurately interpreted the thermal conductivities of the Al alloys. Electrical conductivities were also measured and compared with thermal conductivities estimated using the Wiedemann–Franz law, and the results indicated close agreement. The Wiedemann–Franz law, however, often underestimates the thermal conductivity in Al alloys containing a high level of Si.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mallick PK (2010) Materials, design and manufacturing for lightweight vehicles. CRC Press, RatonCrossRef Mallick PK (2010) Materials, design and manufacturing for lightweight vehicles. CRC Press, RatonCrossRef
2.
Zurück zum Zitat Takahash K, Kuwahara H, Kawasaki N, Obata T, Sugawa E (2001) Enhancement of thermal contact conductance between metal surfaces in an induction motor. J Enhanc Heat Trans 8:201–213CrossRef Takahash K, Kuwahara H, Kawasaki N, Obata T, Sugawa E (2001) Enhancement of thermal contact conductance between metal surfaces in an induction motor. J Enhanc Heat Trans 8:201–213CrossRef
3.
Zurück zum Zitat Kasprzak W, Sahoo M, Sokolowski J, Yamagata H, Kurita H (2009) The effect of the melt temperature and the cooling rate on the microstructure of the Al-20% Si alloy used for monolithic engine blocks. Int J Metalcast 3:55–71 Kasprzak W, Sahoo M, Sokolowski J, Yamagata H, Kurita H (2009) The effect of the melt temperature and the cooling rate on the microstructure of the Al-20% Si alloy used for monolithic engine blocks. Int J Metalcast 3:55–71
4.
Zurück zum Zitat Davis JR (2007) Aluminium and aluminum alloys, vol 6. ASM International, Materials Park Davis JR (2007) Aluminium and aluminum alloys, vol 6. ASM International, Materials Park
5.
Zurück zum Zitat Kim CW, Cho JI, Choi SW, Kim YC (2013) The effect of alloying elements on thermal conductivity of aluminum alloys in high pressure die casting. Adv Mater Res 813:175–178CrossRef Kim CW, Cho JI, Choi SW, Kim YC (2013) The effect of alloying elements on thermal conductivity of aluminum alloys in high pressure die casting. Adv Mater Res 813:175–178CrossRef
6.
Zurück zum Zitat Lumley RN, Deeva N, Larsen R, Gembarovic J, Freeman J (2013) The role of alloy composition and T7 heat treatment in enhancing thermal conductivity of aluminum high pressure diecastings. Metall Mater Trans A 44:1074–1086CrossRef Lumley RN, Deeva N, Larsen R, Gembarovic J, Freeman J (2013) The role of alloy composition and T7 heat treatment in enhancing thermal conductivity of aluminum high pressure diecastings. Metall Mater Trans A 44:1074–1086CrossRef
7.
Zurück zum Zitat Pollock DD (1990) Physics of engineering materials. Prentice Hall, Englewood Cliffs, pp 198–207 Pollock DD (1990) Physics of engineering materials. Prentice Hall, Englewood Cliffs, pp 198–207
8.
Zurück zum Zitat Powell RW (1965) Correlation of metallic thermal and electrical conductivities for both solid and liquid phases. Int J Mass Trans 8:1033–1045CrossRef Powell RW (1965) Correlation of metallic thermal and electrical conductivities for both solid and liquid phases. Int J Mass Trans 8:1033–1045CrossRef
9.
Zurück zum Zitat Wang M, Pan N (2008) Predictions of effective physical properties of complex multiphase materials. Mater Sci Eng R 63:1–30CrossRef Wang M, Pan N (2008) Predictions of effective physical properties of complex multiphase materials. Mater Sci Eng R 63:1–30CrossRef
10.
Zurück zum Zitat Tiedje EW, Guo P (2014) Modeling the influence of particulate geometry on the thermal conductivity of composites. J Mater Sci 49:5586–5597CrossRef Tiedje EW, Guo P (2014) Modeling the influence of particulate geometry on the thermal conductivity of composites. J Mater Sci 49:5586–5597CrossRef
11.
Zurück zum Zitat Helsing J, Grimvall G (1991) Thermal conductivity of cast iron: models and analysis of experiments. J Appl Phys 70:1198–1206CrossRef Helsing J, Grimvall G (1991) Thermal conductivity of cast iron: models and analysis of experiments. J Appl Phys 70:1198–1206CrossRef
12.
Zurück zum Zitat Stadler F, Antrekowitsch H, Fragner W, Kaufmann H, Pinatel ER, Uggowitzer PJ (2013) The effect of main alloying elements on the physical properties of Al–Si foundry alloys. Mater Sci Eng A560:481–491CrossRef Stadler F, Antrekowitsch H, Fragner W, Kaufmann H, Pinatel ER, Uggowitzer PJ (2013) The effect of main alloying elements on the physical properties of Al–Si foundry alloys. Mater Sci Eng A560:481–491CrossRef
13.
Zurück zum Zitat Cingi C, Rauta V, Orkas Suikanen EJ (2012) Effect of heat treatment on thermal conductivity of aluminum die casting alloys. Adv Mater Res 538–541:2047–2052CrossRef Cingi C, Rauta V, Orkas Suikanen EJ (2012) Effect of heat treatment on thermal conductivity of aluminum die casting alloys. Adv Mater Res 538–541:2047–2052CrossRef
14.
Zurück zum Zitat Olafsson P, Sandstrom R, Karlsson A (1997) Comparison of experimental, calculated and observed values for electrical and thermal conductivity of aluminum alloys. J Mater Sci 32:4383–4390CrossRef Olafsson P, Sandstrom R, Karlsson A (1997) Comparison of experimental, calculated and observed values for electrical and thermal conductivity of aluminum alloys. J Mater Sci 32:4383–4390CrossRef
15.
Zurück zum Zitat Gustafsson SE (1991) Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci Instrum 62:797–804CrossRef Gustafsson SE (1991) Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci Instrum 62:797–804CrossRef
16.
Zurück zum Zitat Murray JL, McAlister AJ (1984) The Al-Si system. Bull Alloy Phase Diagr 5:74–84CrossRef Murray JL, McAlister AJ (1984) The Al-Si system. Bull Alloy Phase Diagr 5:74–84CrossRef
17.
Zurück zum Zitat Aksöz S, Ocak Y, Maraşli N, Çadirli E, Kaya H, Bőyȕk U (2010) Dependency of the thermal and electrical conductivity on the temperature and composition of Cu in the Al based Al-Cu alloys. Exp Therm Fluid Sci 34:1507–1516CrossRef Aksöz S, Ocak Y, Maraşli N, Çadirli E, Kaya H, Bőyȕk U (2010) Dependency of the thermal and electrical conductivity on the temperature and composition of Cu in the Al based Al-Cu alloys. Exp Therm Fluid Sci 34:1507–1516CrossRef
18.
Zurück zum Zitat Wu J, Zhang H, Li J, Wang X (2012) Effect of copper content on the thermal conductivity and thermal expansion of Al-Cu/diamond composites. Mater Des 39:87–92CrossRef Wu J, Zhang H, Li J, Wang X (2012) Effect of copper content on the thermal conductivity and thermal expansion of Al-Cu/diamond composites. Mater Des 39:87–92CrossRef
19.
Zurück zum Zitat Nagaumi H (2000) Effect of Mg contents on thermal properties of Al-Mg alloys. J Jpn Inst Light Met 50:49–53CrossRef Nagaumi H (2000) Effect of Mg contents on thermal properties of Al-Mg alloys. J Jpn Inst Light Met 50:49–53CrossRef
20.
Zurück zum Zitat Taylor JA (2012) Iron-containing intermetallic phases in Al-Si based casting alloys. Proc Mater Sci 1:19–33CrossRef Taylor JA (2012) Iron-containing intermetallic phases in Al-Si based casting alloys. Proc Mater Sci 1:19–33CrossRef
21.
Zurück zum Zitat Eleno L, Vezelý J, Sundman B, Cieslar M, Lacaze J (2010) Assessment of the Al corner of the ternary Al-Fe-Si system. Mater Sci For 649:523–528 Eleno L, Vezelý J, Sundman B, Cieslar M, Lacaze J (2010) Assessment of the Al corner of the ternary Al-Fe-Si system. Mater Sci For 649:523–528
22.
Zurück zum Zitat Zhang Y, Wang X, Wu J (2009) In: Proceedings of international conference on electronic packaging technology and high density packaging, Beijing, pp 708–712 Zhang Y, Wang X, Wu J (2009) In: Proceedings of international conference on electronic packaging technology and high density packaging, Beijing, pp 708–712
23.
Zurück zum Zitat Chen JK, Huang IS (2013) Thermal properties of aluminum-graphite composites by powder metallurgy. Compos B 44:698–703CrossRef Chen JK, Huang IS (2013) Thermal properties of aluminum-graphite composites by powder metallurgy. Compos B 44:698–703CrossRef
24.
Zurück zum Zitat Singh R (2011) Predictions of effective thermal conductivity of complex materials. In: Öchsner A, Murch GE (eds) Advanced structured materials, vol 2., Heat transfer in multi-phase materialsSpringer, Berlin, Heidelberg, pp 235–273 Singh R (2011) Predictions of effective thermal conductivity of complex materials. In: Öchsner A, Murch GE (eds) Advanced structured materials, vol 2., Heat transfer in multi-phase materialsSpringer, Berlin, Heidelberg, pp 235–273
25.
Zurück zum Zitat Guzman PAV, Sood A, Mleczko MJ, Wang B, Wong HSP, Nishi Y, Asheghi M, Goodson KE (2014) Cross plane thermal conductance of graphene-metal interfaces. In: Proceedings of 14th IEEE ITHERM conference, Orlando, FL, pp 1385–1389 Guzman PAV, Sood A, Mleczko MJ, Wang B, Wong HSP, Nishi Y, Asheghi M, Goodson KE (2014) Cross plane thermal conductance of graphene-metal interfaces. In: Proceedings of 14th IEEE ITHERM conference, Orlando, FL, pp 1385–1389
26.
Zurück zum Zitat Uma S, McConnell AD, Asheghi M, Kurabayahi K, Goodson KE (2001) Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers. Int J Thermophys 22:605–616CrossRef Uma S, McConnell AD, Asheghi M, Kurabayahi K, Goodson KE (2001) Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers. Int J Thermophys 22:605–616CrossRef
27.
Zurück zum Zitat Wei L, Vaudin M, Hwang CS, White G, Xu J, Steckl AJ (1995) Heat conduction in silicon thin films: effect of microstructure. J Mater Res 10:1889–1896CrossRef Wei L, Vaudin M, Hwang CS, White G, Xu J, Steckl AJ (1995) Heat conduction in silicon thin films: effect of microstructure. J Mater Res 10:1889–1896CrossRef
28.
Zurück zum Zitat Popčević P, Smontara A, Ivkov J, Wencka M, Komelj M, Jeglič P, Vrtnik S, Bobnar M, Jagličić Z, Bauer B (2010) Anisotropic physical properties of the Al13Fe4 complex intermetallic and its ternary derivative Al13(Fe,Ni)4. Phys Rev B 81:art no 184203 Popčević P, Smontara A, Ivkov J, Wencka M, Komelj M, Jeglič P, Vrtnik S, Bobnar M, Jagličić Z, Bauer B (2010) Anisotropic physical properties of the Al13Fe4 complex intermetallic and its ternary derivative Al13(Fe,Ni)4. Phys Rev B 81:art no 184203
29.
Zurück zum Zitat Hatch JE (1984) Aluminium: properties and physical metallurgy. ASM International, Metals Park Hatch JE (1984) Aluminium: properties and physical metallurgy. ASM International, Metals Park
Metadaten
Titel
Thermal and electrical conductivity in Al–Si/Cu/Fe/Mg binary and ternary Al alloys
verfasst von
J. K. Chen
H. Y. Hung
C. F. Wang
N. K. Tang
Publikationsdatum
01.08.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9115-9

Weitere Artikel der Ausgabe 16/2015

Journal of Materials Science 16/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.