Skip to main content

2017 | OriginalPaper | Buchkapitel

20. Thermal Insulation and Porosity—From Macro- to Nanoscale

verfasst von : Dana Křemenáková, Jiří Militký, Mohanapriya Venkataraman, Rajesh Mishra

Erschienen in: Thermal Physics and Thermal Analysis

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Porosity of textiles is one of the main factors influencing their thermal conductivity and insulation. Porosity in textile fabrics is the combination of fiber porosity, yarn packing density, and voids due to fabric construction. It is shown that assemblies from very fine fibers tend to suppress radiation and convection heat transfers because of huge total surface area, which restricts the free flow of air passing through them. For effective thermal insulation especially at low temperatures, it should be selected sufficiently high thickness of textile layer as well. Porosity is therefore decisive parameter for the evaluation of thermal comfort expressed in special units “clo.” The main aim of this chapter is the prediction of the effect of porosity of fabrics and fibers on the thermal conductivity and insulation. The changes of thermal comfort due to the use of hollow fibers and multilayer corrugated nonwovens are described. The thermal properties of highly porous aerogel structures are discussed. Enhancement of insulation by their inclusion into textiles is investigated as well.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Krokida MK, Maroulis ZB (1997) Effect of drying method on shrinkage and porosity. Drying Technol 15:2441–2458CrossRef Krokida MK, Maroulis ZB (1997) Effect of drying method on shrinkage and porosity. Drying Technol 15:2441–2458CrossRef
2.
Zurück zum Zitat Datta AK (2007) Porous media approaches to studying simultaneous heat and mass transfer in food processes. I. Problem formulations. J Food Eng 80:80–95CrossRef Datta AK (2007) Porous media approaches to studying simultaneous heat and mass transfer in food processes. I. Problem formulations. J Food Eng 80:80–95CrossRef
3.
Zurück zum Zitat Farnworth B (1983) Mechanisms of heat flow through clothing insulation. Text Res J 53:717–725CrossRef Farnworth B (1983) Mechanisms of heat flow through clothing insulation. Text Res J 53:717–725CrossRef
4.
Zurück zum Zitat Venkataraman M, Mishra R, Kotresh T M, Militky J and Jamshaid H (2016) Aerogel for thermal insulation in high-performance textiles, Text Prog 48(2):55–118 Venkataraman M, Mishra R, Kotresh T M, Militky J and Jamshaid H (2016) Aerogel for thermal insulation in high-performance textiles, Text Prog 48(2):55–118
5.
Zurück zum Zitat Pl Gagge A et al (1941) A practical system of units for the description of heat exchange of man with his environment. Science 94:428–430CrossRef Pl Gagge A et al (1941) A practical system of units for the description of heat exchange of man with his environment. Science 94:428–430CrossRef
6.
Zurück zum Zitat Petrulis D (2004) Fundamental study of the effect of the fiber wall thickness on the structure of polyamide and polypropylene hollow fibers. J Appl Polym Sci 92:2017–2022CrossRef Petrulis D (2004) Fundamental study of the effect of the fiber wall thickness on the structure of polyamide and polypropylene hollow fibers. J Appl Polym Sci 92:2017–2022CrossRef
7.
Zurück zum Zitat Lu X, Caps R, Fricke J et al (1995) Correlation between structure and thermal-conductivity of organic aerogels. J Non-Cryst Solids 188:226–234CrossRef Lu X, Caps R, Fricke J et al (1995) Correlation between structure and thermal-conductivity of organic aerogels. J Non-Cryst Solids 188:226–234CrossRef
8.
Zurück zum Zitat Fricke J, Tillotson T (1997) Aerogels: Production, characterization and applications. Thin Solid Films 297:212–223CrossRef Fricke J, Tillotson T (1997) Aerogels: Production, characterization and applications. Thin Solid Films 297:212–223CrossRef
9.
Zurück zum Zitat Woignier T, Phalippou J (1987) Skeletal density of silica aerogels. J Non-Cryst Solids 93:17–21CrossRef Woignier T, Phalippou J (1987) Skeletal density of silica aerogels. J Non-Cryst Solids 93:17–21CrossRef
10.
Zurück zum Zitat Lu X, Arduinischuster MC, Kuhn J et al (1992) Thermal-conductivity of monolithic organic aerogels. Science 255:971–972CrossRef Lu X, Arduinischuster MC, Kuhn J et al (1992) Thermal-conductivity of monolithic organic aerogels. Science 255:971–972CrossRef
11.
Zurück zum Zitat Wei GS, Liu YS, Zhang XX et al (2011) Thermal conductivities study on silica aerogel and its composite insulation materials. Int J Heat Mass Transf 54:2355–2366CrossRef Wei GS, Liu YS, Zhang XX et al (2011) Thermal conductivities study on silica aerogel and its composite insulation materials. Int J Heat Mass Transf 54:2355–2366CrossRef
12.
Zurück zum Zitat Fu B, Luo H, Wang F et al (2011) Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel. J Non-Cryst Solids 357:2063–2074CrossRef Fu B, Luo H, Wang F et al (2011) Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel. J Non-Cryst Solids 357:2063–2074CrossRef
13.
Zurück zum Zitat Xiao X, Streiter R, Ruan G et al (2000) Modelling and simulation for dielectric constant of aerogel. Microelectron Eng 54:295–301CrossRef Xiao X, Streiter R, Ruan G et al (2000) Modelling and simulation for dielectric constant of aerogel. Microelectron Eng 54:295–301CrossRef
14.
Zurück zum Zitat Chen ZQ, Cheng P, Hsu CTA (2000) Theoretical and experimental study on stagnant thermal conductivity of porous media. Int Commun Heat Mass 27:601–610CrossRef Chen ZQ, Cheng P, Hsu CTA (2000) Theoretical and experimental study on stagnant thermal conductivity of porous media. Int Commun Heat Mass 27:601–610CrossRef
15.
Zurück zum Zitat Fei H, Hao X, Li Y (2005) Study on thermal properties of aerogels. Mater Rev 19:20–22 Fei H, Hao X, Li Y (2005) Study on thermal properties of aerogels. Mater Rev 19:20–22
16.
Zurück zum Zitat Li SY, Chu HS, Yan WM (2008) Numerical study of phonon radiative transfer in porous nanostructures. Int J Heat Mass Transf 51:3924–3931CrossRef Li SY, Chu HS, Yan WM (2008) Numerical study of phonon radiative transfer in porous nanostructures. Int J Heat Mass Transf 51:3924–3931CrossRef
17.
Zurück zum Zitat Lee OJ, Lee KH, Yim TJ et al (2002) Determination of mesopore size of aerogels from thermal conductivity measurements. J Non-Cryst Solids 298:287–292CrossRef Lee OJ, Lee KH, Yim TJ et al (2002) Determination of mesopore size of aerogels from thermal conductivity measurements. J Non-Cryst Solids 298:287–292CrossRef
18.
Zurück zum Zitat Liu H, Li Y, Zhao X, Tao W (2015) Study on unit cell models and the effective thermal conductivities of silica aerogel. J Nanosci Nanotechno 15(4):3218–3223 Liu H, Li Y, Zhao X, Tao W (2015) Study on unit cell models and the effective thermal conductivities of silica aerogel. J Nanosci Nanotechno 15(4):3218–3223
19.
Zurück zum Zitat Zeng SQ, Hunt A, Greif R (1995) Mean free-path and apparent thermal-conductivity of a gas in a porous-medium. J Heat Trans-Transf ASME 117:758–761CrossRef Zeng SQ, Hunt A, Greif R (1995) Mean free-path and apparent thermal-conductivity of a gas in a porous-medium. J Heat Trans-Transf ASME 117:758–761CrossRef
20.
Zurück zum Zitat Zeng SQ, Hunt A, Greif R (1995) Transport-properties of gas in silica aerogel. J Non-Cryst Solids 186:264–270CrossRef Zeng SQ, Hunt A, Greif R (1995) Transport-properties of gas in silica aerogel. J Non-Cryst Solids 186:264–270CrossRef
21.
Zurück zum Zitat Hrubesh LW, Pekala RW (1994) Thermal-properties of organic and inorganic aerogels. J Mater Res 9:731–738CrossRef Hrubesh LW, Pekala RW (1994) Thermal-properties of organic and inorganic aerogels. J Mater Res 9:731–738CrossRef
22.
Zurück zum Zitat Gross J, Fricke J, Pekala RW et al (1992) Elastic nonlinearity of aerogels. Phys Rev B45:12774–12777CrossRef Gross J, Fricke J, Pekala RW et al (1992) Elastic nonlinearity of aerogels. Phys Rev B45:12774–12777CrossRef
23.
Zurück zum Zitat Wang J, Kuhn J, Lu X (1995) Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J Non-Cryst Solids 186:296–300CrossRef Wang J, Kuhn J, Lu X (1995) Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J Non-Cryst Solids 186:296–300CrossRef
24.
Zurück zum Zitat Swimm K, Reichenauer G, Vidi S et al (2009) Gas pressure dependence of the heat transport in porous solids. Int J Thermophys 30:1329–1342CrossRef Swimm K, Reichenauer G, Vidi S et al (2009) Gas pressure dependence of the heat transport in porous solids. Int J Thermophys 30:1329–1342CrossRef
25.
Zurück zum Zitat Hemberger F, Weis S, Reichenauer G et al (2009) Thermal transport properties of functionally graded carbon aerogels. Int J Thermophys 30:1357–1371CrossRef Hemberger F, Weis S, Reichenauer G et al (2009) Thermal transport properties of functionally graded carbon aerogels. Int J Thermophys 30:1357–1371CrossRef
26.
Zurück zum Zitat Zhao JJ, Duan YY, Wang XD et al (2012) A 3-D numerical heat transfer model for silica aerogels based on the aggregate structure. J Non-Cryst Solids 358:1287–1297CrossRef Zhao JJ, Duan YY, Wang XD et al (2012) A 3-D numerical heat transfer model for silica aerogels based on the aggregate structure. J Non-Cryst Solids 358:1287–1297CrossRef
27.
Zurück zum Zitat Zeng JS, Greif QR, Stevens P (1996) et al. Effective optical constants n and k and extinction coefficient of silica aerogel. J Mater Res 11:687–693CrossRef Zeng JS, Greif QR, Stevens P (1996) et al. Effective optical constants n and k and extinction coefficient of silica aerogel. J Mater Res 11:687–693CrossRef
28.
Zurück zum Zitat Deng ZS, Wang J, Wu AM et al (1998) High strength SiO2 aerogel insulation. J Non-Cryst Solids 225:101–104CrossRef Deng ZS, Wang J, Wu AM et al (1998) High strength SiO2 aerogel insulation. J Non-Cryst Solids 225:101–104CrossRef
29.
Zurück zum Zitat Lee SC, Cunnington GR (2000) Conduction and radiation heat transfer in high-porosity fiber thermal insulation. J Thermophys Heat Transf 14:121–136CrossRef Lee SC, Cunnington GR (2000) Conduction and radiation heat transfer in high-porosity fiber thermal insulation. J Thermophys Heat Transf 14:121–136CrossRef
30.
Zurück zum Zitat Cunnington GR, Lee SC (1996) Radiative properties of fibrous insulations: theory versus experiment. J Thermophys Heat Transf 10:460–466CrossRef Cunnington GR, Lee SC (1996) Radiative properties of fibrous insulations: theory versus experiment. J Thermophys Heat Transf 10:460–466CrossRef
31.
Zurück zum Zitat Rozek Z et al (2008) Potential applications of nanofiber textile covered by carbon coatings. J Achievements Mater Manufacturing Eng 27:35–38 Rozek Z et al (2008) Potential applications of nanofiber textile covered by carbon coatings. J Achievements Mater Manufacturing Eng 27:35–38
32.
Zurück zum Zitat Li Y, Holcombe BV (1998) Mathematical simulation of heat and moisture transfer in a human-clothing-environment system. Text Res J 68:389–397 Li Y, Holcombe BV (1998) Mathematical simulation of heat and moisture transfer in a human-clothing-environment system. Text Res J 68:389–397
33.
Zurück zum Zitat Fohr JP, Treguier G (2002) Dynamic heat and water transfer through layered fabrics. Text Res J 72:1–12CrossRef Fohr JP, Treguier G (2002) Dynamic heat and water transfer through layered fabrics. Text Res J 72:1–12CrossRef
34.
Zurück zum Zitat Sukigara SHY, Fujimoto T (2003) Compression and thermal properties of recycled fiber assemblies. Text Res J 73:310–315CrossRef Sukigara SHY, Fujimoto T (2003) Compression and thermal properties of recycled fiber assemblies. Text Res J 73:310–315CrossRef
35.
Zurück zum Zitat Reim M et al (2005) Silica aerogel granulate material for thermal insulation and daylighting. Sol Energy 79:131–139CrossRef Reim M et al (2005) Silica aerogel granulate material for thermal insulation and daylighting. Sol Energy 79:131–139CrossRef
36.
Zurück zum Zitat Venkataraman M, Mishra R, Jasikova D, Kotresh TM, Militky J. Thermodynamics of aerogel treated nonwoven fabrics at subzero temperatures. J Ind Text (in print) Venkataraman M, Mishra R, Jasikova D, Kotresh TM, Militky J. Thermodynamics of aerogel treated nonwoven fabrics at subzero temperatures. J Ind Text (in print)
37.
Zurück zum Zitat Warrier P, Yuan YH, Beck MP et al (2010) Heat transfer in nanoparticle suspensions: modeling the thermal conductivity of nanofluids. AIChE J 56:3243–3256CrossRef Warrier P, Yuan YH, Beck MP et al (2010) Heat transfer in nanoparticle suspensions: modeling the thermal conductivity of nanofluids. AIChE J 56:3243–3256CrossRef
Metadaten
Titel
Thermal Insulation and Porosity—From Macro- to Nanoscale
verfasst von
Dana Křemenáková
Jiří Militký
Mohanapriya Venkataraman
Rajesh Mishra
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-45899-1_20

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.