Skip to main content
Erschienen in: Journal of Nanoparticle Research 10/2011

01.10.2011 | Research Paper

Thermal processing and native oxidation of silicon nanoparticles

verfasst von: Brandon J. Winters, Jason Holm, Jeffrey T. Roberts

Erschienen in: Journal of Nanoparticle Research | Ausgabe 10/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS) were used to investigate in-air oxidation of silicon nanoparticles ca. 11 nm in diameter. Particle samples were prepared first by extracting them from an RF plasma synthesis reactor, and then heating them in an inert carrier gas stream. The resulting particles had varying surface hydrogen coverages and relative amounts of SiH x (x = 1, 2, and 3), depending on the temperature to which they had been heated. The particles were allowed to oxidize in-air for several weeks. FTIR, XPS, and EELS analyses that were performed during this period clearly establish that adsorbed hydrogen retards oxidation, although in complex ways. In particular, particles that have been heated to intermediate hydrogen coverages oxidize more slowly in air than do freshly generated particles that have a much higher hydrogen content. In addition, the loss of surface hydride species at high processing temperatures results in fast initial oxidation and the formation of a self-limiting oxide layer. Analogous measurements made on deuterium-covered particles show broadly similar behavior; i.e., that oxidation is the slowest at some intermediate coverage of adsorbed deuterium.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bapat A, Gatti M et al (2007) A plasma process for the synthesis of cubic-shaped silicon nanocrystals for nanoelectronic devices. J Phys D Appl Phys 40:2247–2257CrossRef Bapat A, Gatti M et al (2007) A plasma process for the synthesis of cubic-shaped silicon nanocrystals for nanoelectronic devices. J Phys D Appl Phys 40:2247–2257CrossRef
Zurück zum Zitat Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287CrossRef Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287CrossRef
Zurück zum Zitat Burleson DJ, Driessen MD et al (2004) On the characterization of environmental nanoparticles. J Environ Sci Health A 39:2707–2753CrossRef Burleson DJ, Driessen MD et al (2004) On the characterization of environmental nanoparticles. J Environ Sci Health A 39:2707–2753CrossRef
Zurück zum Zitat Carter RS, Harley SJ et al (2005) Use of NMR spectroscopy in the synthesis and characterization of air- and water-stable silicon nanoparticles from porous silicon. Chem Mater 17:2932–2939CrossRef Carter RS, Harley SJ et al (2005) Use of NMR spectroscopy in the synthesis and characterization of air- and water-stable silicon nanoparticles from porous silicon. Chem Mater 17:2932–2939CrossRef
Zurück zum Zitat Chabal YJ, Weldon MK et al (2001) Fundamental aspects of silicon oxidation. Springer-Verlag, New YorkCrossRef Chabal YJ, Weldon MK et al (2001) Fundamental aspects of silicon oxidation. Springer-Verlag, New YorkCrossRef
Zurück zum Zitat Dabrowski J, Mussig H (2000) Silicon surfaces and formation of interfaces. World Scientific, New JerseyCrossRef Dabrowski J, Mussig H (2000) Silicon surfaces and formation of interfaces. World Scientific, New JerseyCrossRef
Zurück zum Zitat Dong Y (2005) Devices made on single crystal silicon nanoparticles. Dissertation. University of Minnesota, Minnesota Dong Y (2005) Devices made on single crystal silicon nanoparticles. Dissertation. University of Minnesota, Minnesota
Zurück zum Zitat Elena VR (2006) Carboxyl functionalization of ultrasmall luminescent silicon nanoparticles through thermal hydrosilylation. J Mater Chem 16:1421–1430CrossRef Elena VR (2006) Carboxyl functionalization of ultrasmall luminescent silicon nanoparticles through thermal hydrosilylation. J Mater Chem 16:1421–1430CrossRef
Zurück zum Zitat Fritzsche H (1984) Electronic properties of surfaces in a-Si:H. In: Pankove JI (ed) Semiconductors and semimetals: hydrogenated amorphous silicon. Academic Press, Inc, New York, pp 314–316 Fritzsche H (1984) Electronic properties of surfaces in a-Si:H. In: Pankove JI (ed) Semiconductors and semimetals: hydrogenated amorphous silicon. Academic Press, Inc, New York, pp 314–316
Zurück zum Zitat Holm J, Roberts JT (2007a) Surface chemistry of aerosolized silicon nanoparticles: evolution and desorption of hydrogen from 6-nm diameter particles. J Am Chem Soc 129:2496–2503CrossRef Holm J, Roberts JT (2007a) Surface chemistry of aerosolized silicon nanoparticles: evolution and desorption of hydrogen from 6-nm diameter particles. J Am Chem Soc 129:2496–2503CrossRef
Zurück zum Zitat Holm J, Roberts JT (2007b) Thermal oxidation of 6 nm aerosolized silicon nanoparticles: size and surface chemistry changes. Langmuir 23:11217–11224. doi:10.1021/10010869 CrossRef Holm J, Roberts JT (2007b) Thermal oxidation of 6 nm aerosolized silicon nanoparticles: size and surface chemistry changes. Langmuir 23:11217–11224. doi:10.​1021/​10010869 CrossRef
Zurück zum Zitat Holm J, Roberts JT (2009) Sintering, coalescence, and compositional changes of hydrogen-terminated silicon nanoparticles as a function of temperature. J Phys Chem C 113:15955–15963. doi:10.1021/jp905748j CrossRef Holm J, Roberts JT (2009) Sintering, coalescence, and compositional changes of hydrogen-terminated silicon nanoparticles as a function of temperature. J Phys Chem C 113:15955–15963. doi:10.​1021/​jp905748j CrossRef
Zurück zum Zitat Hua F, Erogbogbo F et al (2006) Organically capped silicon nanoparticles with blue photoluminescence prepared by hydrosilylation followed by oxidation. Langmuir 22:4363–4370CrossRef Hua F, Erogbogbo F et al (2006) Organically capped silicon nanoparticles with blue photoluminescence prepared by hydrosilylation followed by oxidation. Langmuir 22:4363–4370CrossRef
Zurück zum Zitat Kortshagen U, Mangolini L et al (2007) Plasma synthesis of semiconductor nanocrystals for nanoelectronics and luminescence applications. J Nanopart Res 9:39–52CrossRef Kortshagen U, Mangolini L et al (2007) Plasma synthesis of semiconductor nanocrystals for nanoelectronics and luminescence applications. J Nanopart Res 9:39–52CrossRef
Zurück zum Zitat Kovalevskii AA, Shevchenok AA et al (2008) Oxidation behavior of micro- and nanostructured silicon powders. Inorg Mater 44:445–449CrossRef Kovalevskii AA, Shevchenok AA et al (2008) Oxidation behavior of micro- and nanostructured silicon powders. Inorg Mater 44:445–449CrossRef
Zurück zum Zitat Liao YC, Roberts JT (2006) Self-assembly of organic monolayers on aerosolized silicon nanoparticles. J Am Chem Soc 128:9061–9065CrossRef Liao YC, Roberts JT (2006) Self-assembly of organic monolayers on aerosolized silicon nanoparticles. J Am Chem Soc 128:9061–9065CrossRef
Zurück zum Zitat Liao Y-C, Nienow AM et al (2006) Surface chemistry of aerosolized nanoparticles: thermal oxidation of silicon. J Phys Chem B 110:6190–6197CrossRef Liao Y-C, Nienow AM et al (2006) Surface chemistry of aerosolized nanoparticles: thermal oxidation of silicon. J Phys Chem B 110:6190–6197CrossRef
Zurück zum Zitat Mangolini L, Thimsen E et al (2005) High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett 5:655–659CrossRef Mangolini L, Thimsen E et al (2005) High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett 5:655–659CrossRef
Zurück zum Zitat Marra DC, Edelberg EA et al (1998) Silicon hydride composition of plasma-deposited hydrogenated amorphous and nanocrystalline silicon films and surfaces. J Vac Sci Technol A 16:3199–3210. doi:10.1116/1.581520 CrossRef Marra DC, Edelberg EA et al (1998) Silicon hydride composition of plasma-deposited hydrogenated amorphous and nanocrystalline silicon films and surfaces. J Vac Sci Technol A 16:3199–3210. doi:10.​1116/​1.​581520 CrossRef
Zurück zum Zitat Marra DC, Kessels WMM et al (2003) Surface hydride composition of plasma deposited hydrogenated amorphous silicon: in situ infrared study of ion flux and temperature dependence. Surf Sci 530:1–16. doi:10.1016/S0039-6028(03)00396-0 CrossRef Marra DC, Kessels WMM et al (2003) Surface hydride composition of plasma deposited hydrogenated amorphous silicon: in situ infrared study of ion flux and temperature dependence. Surf Sci 530:1–16. doi:10.​1016/​S0039-6028(03)00396-0 CrossRef
Zurück zum Zitat Matsumoto T, Belogorokhov AI et al (2000) The effect of deuterium on the optical properties of free-standing porous silicon layers. Nanotechnology 11:340–347CrossRef Matsumoto T, Belogorokhov AI et al (2000) The effect of deuterium on the optical properties of free-standing porous silicon layers. Nanotechnology 11:340–347CrossRef
Zurück zum Zitat Mayeri D, Phillips BL et al (2001) NMR study of the synthesis of alkyl-terminated silicon nanoparticles from the reaction of SiCl4 with the Zintl salt, NaSi. Chem Mater 13:765–770CrossRef Mayeri D, Phillips BL et al (2001) NMR study of the synthesis of alkyl-terminated silicon nanoparticles from the reaction of SiCl4 with the Zintl salt, NaSi. Chem Mater 13:765–770CrossRef
Zurück zum Zitat Maynard A, Kuempel E (2005) Airborne nanostructured particles and occupational health. J Nanopart Res 7:587–614CrossRef Maynard A, Kuempel E (2005) Airborne nanostructured particles and occupational health. J Nanopart Res 7:587–614CrossRef
Zurück zum Zitat Miura T-A, Niwano M et al (1996) Initial stages of oxidation of hydrogen-terminated Si surface stored in air. Appl Surf Sci 100–101:454–459CrossRef Miura T-A, Niwano M et al (1996) Initial stages of oxidation of hydrogen-terminated Si surface stored in air. Appl Surf Sci 100–101:454–459CrossRef
Zurück zum Zitat Nayfeh MH (2003) Synthesis, functionalization and surface treatment of nanoparticles. American Scientific Publishers, Stevenson Ranch Nayfeh MH (2003) Synthesis, functionalization and surface treatment of nanoparticles. American Scientific Publishers, Stevenson Ranch
Zurück zum Zitat Nienow AM, Roberts JT (2006) Chemical vapor deposition of zirconium oxide on aerosolized silicon nanoparticles. Chem Mater 18:5571–5577CrossRef Nienow AM, Roberts JT (2006) Chemical vapor deposition of zirconium oxide on aerosolized silicon nanoparticles. Chem Mater 18:5571–5577CrossRef
Zurück zum Zitat Pai PG, Chao SS et al (1986) Infrared spectroscopic study of SiO[sub x] films produced by plasma enhanced chemical vapor deposition. J Vac Sci Technol A 4:689–694. doi:10.1116/1.573833 CrossRef Pai PG, Chao SS et al (1986) Infrared spectroscopic study of SiO[sub x] films produced by plasma enhanced chemical vapor deposition. J Vac Sci Technol A 4:689–694. doi:10.​1116/​1.​573833 CrossRef
Zurück zum Zitat Zou J, Baldwin RK et al (2004) Solution synthesis of ultrastable luminescent siloxane-coated silicon nanoparticles. Nano Lett 4:1181–1186CrossRef Zou J, Baldwin RK et al (2004) Solution synthesis of ultrastable luminescent siloxane-coated silicon nanoparticles. Nano Lett 4:1181–1186CrossRef
Metadaten
Titel
Thermal processing and native oxidation of silicon nanoparticles
verfasst von
Brandon J. Winters
Jason Holm
Jeffrey T. Roberts
Publikationsdatum
01.10.2011
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 10/2011
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-011-0535-4

Weitere Artikel der Ausgabe 10/2011

Journal of Nanoparticle Research 10/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.