Skip to main content
Erschienen in: Journal of Materials Science 18/2018

12.06.2018 | Electronic materials

Thin film deposition of organic hole transporting materials: optical, thermodynamic and morphological properties of naphthyl-substituted benzidines

verfasst von: José C. S. Costa, Adélio Mendes, Luís M. N. B. F. Santos

Erschienen in: Journal of Materials Science | Ausgabe 18/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aromatic diamines and naphthyl-substituted benzidines (BDB, TPB, TPD, NPB, α-NPD, β-NPB, TNB) are listed as one of the best series available of hole transport materials used as thin films in organic electronics (OLEDs, OPVs). High-quality, homogeneous and compact thin films (≈ 300 nm of thickness) of this compound series were prepared by a physical vapor deposition procedure. SEM and XRD characterizations evidence the amorphous nature of the thin films of NPB, α-NPD, β-NPB and TNB, prepared onto ITO and gold surfaces by a controlling mass flow rate. The semiconducting behavior of this class of π-conjugated materials was investigated through UV–vis characterization by the determination of optical band gaps (≈ 3 eV). According to DSC, SEM and XRD analyses, the materials evidenced an amorphous structure and high thermal stability in the glassy state. Analyzing the melting properties, the ratio Tg/Tm = 2/3 was observed for TPB and NPB, which have a higher molecular symmetry, while Tg/Tm = 3/4 was observed for the asymmetric β-NPB and TPD. The first accurate measurements of the vapor pressures and thermodynamic properties of phase transition were obtained for the most common hole transport material (NPB) in OLEDs. The relative stability of the crystalline phases of the diamine derivatives (BDB, TPB, NPB) was found to be enthalpically driven, increasing linearly with the molar volume of the compound.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Shirota Y (2000) organic materials for electronic and optoelectronic devices. J Mater Chem 10:1–25CrossRef Shirota Y (2000) organic materials for electronic and optoelectronic devices. J Mater Chem 10:1–25CrossRef
2.
Zurück zum Zitat Adachi C, Nagai K, Tamoto N (1995) Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes. Appl Phys Lett 66:2679–2681CrossRef Adachi C, Nagai K, Tamoto N (1995) Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes. Appl Phys Lett 66:2679–2681CrossRef
3.
Zurück zum Zitat Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J (2011) Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv Mater 23:926–952CrossRef Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J (2011) Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv Mater 23:926–952CrossRef
4.
Zurück zum Zitat O´Neill M, Kelly SM (2011) Ordered materials for organic electronics and photonics. Adv Mater 23:566–584CrossRef O´Neill M, Kelly SM (2011) Ordered materials for organic electronics and photonics. Adv Mater 23:566–584CrossRef
5.
Zurück zum Zitat Geffroy B, Roy P, Prat C (2006) Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym Int 55:572–582CrossRef Geffroy B, Roy P, Prat C (2006) Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym Int 55:572–582CrossRef
6.
Zurück zum Zitat Aonuma M, Oyamada T, Sasabe H (2007) Material design of hole transport materials capable of thick-film formation in organic light emitting diodes. Appl Phys Lett 90:183503CrossRef Aonuma M, Oyamada T, Sasabe H (2007) Material design of hole transport materials capable of thick-film formation in organic light emitting diodes. Appl Phys Lett 90:183503CrossRef
7.
Zurück zum Zitat Sano T, Nishio Y, Hamada Y, Takahashi H, Usuki T, Shibata K (2000) Design of conjugated molecular materials for optoelectronics. J Mater Chem 10:157–161CrossRef Sano T, Nishio Y, Hamada Y, Takahashi H, Usuki T, Shibata K (2000) Design of conjugated molecular materials for optoelectronics. J Mater Chem 10:157–161CrossRef
8.
Zurück zum Zitat Tao S, Zhou Y, Lee CS, Lee ST, Huang D, Zhang X (2008) Highly efficient nondoped blue organic light-emitting diodes based on anthracene-triphenylamine derivatives. J Phys Chem C 112:14603–14606CrossRef Tao S, Zhou Y, Lee CS, Lee ST, Huang D, Zhang X (2008) Highly efficient nondoped blue organic light-emitting diodes based on anthracene-triphenylamine derivatives. J Phys Chem C 112:14603–14606CrossRef
9.
Zurück zum Zitat Cias P, Slugovc C, Gescheidt G (2011) Hole transport in triphenylamine based oled devices: from theoretical modeling to properties prediction. J Phys Chem A 115:14519–14525CrossRef Cias P, Slugovc C, Gescheidt G (2011) Hole transport in triphenylamine based oled devices: from theoretical modeling to properties prediction. J Phys Chem A 115:14519–14525CrossRef
10.
Zurück zum Zitat Costa JCS, Santos LMNBF (2013) Hole transport materials based thin films: topographic structures and phase transition thermodynamics of triphenylamine derivatives. J Phys Chem C 117:10919–10928CrossRef Costa JCS, Santos LMNBF (2013) Hole transport materials based thin films: topographic structures and phase transition thermodynamics of triphenylamine derivatives. J Phys Chem C 117:10919–10928CrossRef
11.
Zurück zum Zitat Naka S, Okada H, Onnagawa H, Yamaguchi Y, Tsutsui T (2000) Carrier transport properties of organic materials for EL device operation. Synth Met 111–112:331–333CrossRef Naka S, Okada H, Onnagawa H, Yamaguchi Y, Tsutsui T (2000) Carrier transport properties of organic materials for EL device operation. Synth Met 111–112:331–333CrossRef
12.
Zurück zum Zitat Shirota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953–1010CrossRef Shirota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953–1010CrossRef
13.
Zurück zum Zitat Calió L, Kazim S, Gratzel M, Ahmad S (2016) Hole-transport materials for perovskite solar cells. Angew Chem Int Ed 55:14522–14545CrossRef Calió L, Kazim S, Gratzel M, Ahmad S (2016) Hole-transport materials for perovskite solar cells. Angew Chem Int Ed 55:14522–14545CrossRef
14.
Zurück zum Zitat Leijtens T, Ding I-K, Giovenzana T, Bloking JT, McCehee MD, Sellinger A (2012) Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. ACS Nano 6:1455–1462CrossRef Leijtens T, Ding I-K, Giovenzana T, Bloking JT, McCehee MD, Sellinger A (2012) Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. ACS Nano 6:1455–1462CrossRef
15.
Zurück zum Zitat Bi D, Yang L, Boschloo G, Hagfeldt A, Johansson EMJ (2013) Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J Phys Chem Lett 4:1532–1536CrossRef Bi D, Yang L, Boschloo G, Hagfeldt A, Johansson EMJ (2013) Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J Phys Chem Lett 4:1532–1536CrossRef
16.
Zurück zum Zitat Van Slyke SA, Chen CH, Tang CW (1996) Organic electroluminescent devices with improved stability. Appl Phys Lett 69:2160–2162CrossRef Van Slyke SA, Chen CH, Tang CW (1996) Organic electroluminescent devices with improved stability. Appl Phys Lett 69:2160–2162CrossRef
17.
Zurück zum Zitat Tong QX, Lai SL, Chan MY, Lai KH, Tang JX, Kwong HL, Lee CS, Lee ST (2007) High Tg triphenylamine-based starburst hole-transporting material for organic light-emitting devices. Chem Mater 19:5851–5855CrossRef Tong QX, Lai SL, Chan MY, Lai KH, Tang JX, Kwong HL, Lee CS, Lee ST (2007) High Tg triphenylamine-based starburst hole-transporting material for organic light-emitting devices. Chem Mater 19:5851–5855CrossRef
18.
Zurück zum Zitat Costa JCS, Lima CFRAC, Santos LMNBF (2014) Electron transport materials for OLEDs: understanding the crystal and molecular stability of the tris(8-hydroxyquinolines) of Al, Ga, and In. J Phys Chem C 118:21762–21769CrossRef Costa JCS, Lima CFRAC, Santos LMNBF (2014) Electron transport materials for OLEDs: understanding the crystal and molecular stability of the tris(8-hydroxyquinolines) of Al, Ga, and In. J Phys Chem C 118:21762–21769CrossRef
19.
Zurück zum Zitat Mattox DM (2014) Handbook of physical vapor deposition (PVD) processing. Elsevier Science, Amsterdam Mattox DM (2014) Handbook of physical vapor deposition (PVD) processing. Elsevier Science, Amsterdam
20.
Zurück zum Zitat Costa JCS, Rocha RM, Vaz ICM, Torres MC, Mendes A, Santos LMNBF (2015) Description and test of a new multilayer thin film vapor deposition apparatus for organic semiconductor materials. J Chem Eng Data 60:3776–3791CrossRef Costa JCS, Rocha RM, Vaz ICM, Torres MC, Mendes A, Santos LMNBF (2015) Description and test of a new multilayer thin film vapor deposition apparatus for organic semiconductor materials. J Chem Eng Data 60:3776–3791CrossRef
21.
Zurück zum Zitat Halls MD, Tripp CP, Schlegel HB (2001) Structure and infrared (ir) assignments for the OLED material: N, N′-diphenyl-N, N′-bis(1-naphthyl)-1,1′-biphenyl-4,4″-diamine (NPB). Phys Chem Chem Phys 3:2131–2136CrossRef Halls MD, Tripp CP, Schlegel HB (2001) Structure and infrared (ir) assignments for the OLED material: N, N′-diphenyl-N, N′-bis(1-naphthyl)-1,1′-biphenyl-4,4″-diamine (NPB). Phys Chem Chem Phys 3:2131–2136CrossRef
22.
Zurück zum Zitat Li B, Chen J, Zhao Y, Yang D, Ma D (2011) Effects of carrier trapping and scattering on hole transport properties of N, N′-diphenyl-N, N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine thin films. Org Electron 12:974–979CrossRef Li B, Chen J, Zhao Y, Yang D, Ma D (2011) Effects of carrier trapping and scattering on hole transport properties of N, N′-diphenyl-N, N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine thin films. Org Electron 12:974–979CrossRef
23.
Zurück zum Zitat Shim S, Kim JT, Shin EJ, Chung NK, Ko MK, Kwon O, Yun JY (2016) Phase behaviors of NPB molecule under vacuum. Mater Res Bull 82:67–70CrossRef Shim S, Kim JT, Shin EJ, Chung NK, Ko MK, Kwon O, Yun JY (2016) Phase behaviors of NPB molecule under vacuum. Mater Res Bull 82:67–70CrossRef
24.
Zurück zum Zitat Takebayashi Y, Morii N, Sue K, Furuya T, Yoda S, Ikemizu D, Taka H (2015) Solubility of N, N′-Di(1-naphthyl)-N, N′-diphenyl Benzidine (NPB) in various organic solvents: measurement and correlation with the hansen solubility parameter. Ind Eng Chem Res 54:8801–8808CrossRef Takebayashi Y, Morii N, Sue K, Furuya T, Yoda S, Ikemizu D, Taka H (2015) Solubility of N, N′-Di(1-naphthyl)-N, N′-diphenyl Benzidine (NPB) in various organic solvents: measurement and correlation with the hansen solubility parameter. Ind Eng Chem Res 54:8801–8808CrossRef
25.
Zurück zum Zitat Chao YC, Chuang CH, Hsu HL, Wang HJ, Hsu YC, Chen CP, Jeng RJ (2016) Enhanced thermal stability of organic photovoltaics via incorporating triphenylamine derivatives as additives. Sol Energy Mater Sol Cell 157:666–675CrossRef Chao YC, Chuang CH, Hsu HL, Wang HJ, Hsu YC, Chen CP, Jeng RJ (2016) Enhanced thermal stability of organic photovoltaics via incorporating triphenylamine derivatives as additives. Sol Energy Mater Sol Cell 157:666–675CrossRef
26.
Zurück zum Zitat Tagare J, Ulla H, Satyanarayan MN, Vaidyanathan S (2018) Synthesis, photophysical and electroluminescence studies of new triphenylamine-phenanthroimidazole based materials for organic light emitting diodes. J Lumin 194:600–609CrossRef Tagare J, Ulla H, Satyanarayan MN, Vaidyanathan S (2018) Synthesis, photophysical and electroluminescence studies of new triphenylamine-phenanthroimidazole based materials for organic light emitting diodes. J Lumin 194:600–609CrossRef
27.
Zurück zum Zitat Santos LMNBF, Lima LMSS, Lima CFRAC, Magalhaes FD, Torres MC, Schroder B, Ribeiro da Silva MAV (2011) New Knudsen effusion apparatus with simultaneous gravimetric and quartz crystal microbalance mass loss detection. J Chem Thermodyn 43:834–843CrossRef Santos LMNBF, Lima LMSS, Lima CFRAC, Magalhaes FD, Torres MC, Schroder B, Ribeiro da Silva MAV (2011) New Knudsen effusion apparatus with simultaneous gravimetric and quartz crystal microbalance mass loss detection. J Chem Thermodyn 43:834–843CrossRef
28.
Zurück zum Zitat Costa JCS, Taveira RJS, Lima CFRAC, Mendes A, Santos LMNBF (2016) Optical band gaps of organic semiconductor materials. Opt Mater 58:51–60CrossRef Costa JCS, Taveira RJS, Lima CFRAC, Mendes A, Santos LMNBF (2016) Optical band gaps of organic semiconductor materials. Opt Mater 58:51–60CrossRef
29.
Zurück zum Zitat Roux MV, Temprado M, Chickos JS, Nagano Y (2008) Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons. J Phys Chem Ref Data 37:1855–1996CrossRef Roux MV, Temprado M, Chickos JS, Nagano Y (2008) Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons. J Phys Chem Ref Data 37:1855–1996CrossRef
30.
Zurück zum Zitat Sabbah R, Xu-wu A, Chickos JS, Planas Leitao ML, Roux MV, Torres LA (1999) Reference materials for calorimetry and differential thermal analysis. Thermochim Acta 331:93–204CrossRef Sabbah R, Xu-wu A, Chickos JS, Planas Leitao ML, Roux MV, Torres LA (1999) Reference materials for calorimetry and differential thermal analysis. Thermochim Acta 331:93–204CrossRef
31.
Zurück zum Zitat Martins JS, Bartolomeu AA, Santos WH, Filho LCS, Oliveira EF, Lavarda FC, Cuin A, Legnani C, Maciel IO, Fragneaud B, Quirino WG (2017) New class of organic hole-transporting materials based on xanthene derivatives for organic electronic applications. J Phys Chem C 121:12999–13007CrossRef Martins JS, Bartolomeu AA, Santos WH, Filho LCS, Oliveira EF, Lavarda FC, Cuin A, Legnani C, Maciel IO, Fragneaud B, Quirino WG (2017) New class of organic hole-transporting materials based on xanthene derivatives for organic electronic applications. J Phys Chem C 121:12999–13007CrossRef
32.
Zurück zum Zitat Rajagopal A, Wu CI, Kahn A (1998) Energy level offset at organic semiconductor heterojunctions. J Appl Phys 83:2649–2655CrossRef Rajagopal A, Wu CI, Kahn A (1998) Energy level offset at organic semiconductor heterojunctions. J Appl Phys 83:2649–2655CrossRef
33.
Zurück zum Zitat Hill IG, Kahn A (1999) Organic semiconductor heterointerfaces containing bathocuproine. J Appl Phys 86:4515–4519CrossRef Hill IG, Kahn A (1999) Organic semiconductor heterointerfaces containing bathocuproine. J Appl Phys 86:4515–4519CrossRef
34.
Zurück zum Zitat New E, Howells T, Sullivan P, Jones TS (2013) Small molecule tandem organic photovoltaic cells incorporating an alpha-NPD optical spacer layer. Organ Electron 14:2353–2359CrossRef New E, Howells T, Sullivan P, Jones TS (2013) Small molecule tandem organic photovoltaic cells incorporating an alpha-NPD optical spacer layer. Organ Electron 14:2353–2359CrossRef
35.
Zurück zum Zitat O´Brien DF, Burrows PE, Forrest SR, Koene BE, Loy DE, Thompson ME (1998) Hole transporting materials with high glass transition temperatures for use in organic light-emitting devices. Adv Mater 10:1108–1112CrossRef O´Brien DF, Burrows PE, Forrest SR, Koene BE, Loy DE, Thompson ME (1998) Hole transporting materials with high glass transition temperatures for use in organic light-emitting devices. Adv Mater 10:1108–1112CrossRef
36.
Zurück zum Zitat Lee YJ, Lee H, Byun Y, Song S, Kim JE, Eom D, Cha W, Park SS, Kim J, Kim H (2007) Study of thermal degradation of organic light emitting device structures by X-ray scattering. Thin Solid Films 515:5674–5677CrossRef Lee YJ, Lee H, Byun Y, Song S, Kim JE, Eom D, Cha W, Park SS, Kim J, Kim H (2007) Study of thermal degradation of organic light emitting device structures by X-ray scattering. Thin Solid Films 515:5674–5677CrossRef
37.
Zurück zum Zitat Lima CFRAC, Costa JCS, Melo A, Tavares HR, Silva AMS, Santos LMNBF (2015) Effect of self-association on the phase stability of triphenylamine derivatives. J Phys Chem A 119:6676–6682CrossRef Lima CFRAC, Costa JCS, Melo A, Tavares HR, Silva AMS, Santos LMNBF (2015) Effect of self-association on the phase stability of triphenylamine derivatives. J Phys Chem A 119:6676–6682CrossRef
38.
Zurück zum Zitat Zhang HG, Yu WT, Wang L, Yang JX, Liu Z, Tao XT, Jiang MH (2005) Crystal structure of N, N, N′, N′-Tetraphenyl-1,4-benzenediamine, C30H24N2. Z Kristallogr NCS 220:101–102 Zhang HG, Yu WT, Wang L, Yang JX, Liu Z, Tao XT, Jiang MH (2005) Crystal structure of N, N, N′, N′-Tetraphenyl-1,4-benzenediamine, C30H24N2. Z Kristallogr NCS 220:101–102
39.
Zurück zum Zitat Zhang HG, Yu WT, Ya SN, Cheng C, Tao XT (2006) N, N, N′, N′-Tetra-phenyl-1,1′-biphenyl-4,4′-diamine. Acta Crystallogr E62:o5236–o5238 Zhang HG, Yu WT, Ya SN, Cheng C, Tao XT (2006) N, N, N′, N′-Tetra-phenyl-1,1′-biphenyl-4,4′-diamine. Acta Crystallogr E62:o5236–o5238
40.
Zurück zum Zitat Song Y, Di C, Yang X, Li S, Xu W, Liu Y, Yang L, Shuai Z, Zhang D, Zhu DA (2006) Cyclic triphenylamine dimer for organic field-effect transistors with high performance. J Am Chem Soc 128:15940–15941CrossRef Song Y, Di C, Yang X, Li S, Xu W, Liu Y, Yang L, Shuai Z, Zhang D, Zhu DA (2006) Cyclic triphenylamine dimer for organic field-effect transistors with high performance. J Am Chem Soc 128:15940–15941CrossRef
41.
Zurück zum Zitat Shao X, Asahi K, Yamauchi T, Sugimoto T, Shiro MA (2009) New crystal phase of N, N, N′, N′-Tetraphenyl-1,1′-biphenyl-4,4′-diamine. Acta Crystallogr E 65:o1224CrossRef Shao X, Asahi K, Yamauchi T, Sugimoto T, Shiro MA (2009) New crystal phase of N, N, N′, N′-Tetraphenyl-1,1′-biphenyl-4,4′-diamine. Acta Crystallogr E 65:o1224CrossRef
42.
Zurück zum Zitat Zhang Z, Burkholder E, Zubieta J (2004) Non-merohedrally twinned crystals of N, N′-Bis(3-methylphenyl)-N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine: an excellent triphenylamine-based hole transporter. Acta Crystallogr C 60:o452–o454CrossRef Zhang Z, Burkholder E, Zubieta J (2004) Non-merohedrally twinned crystals of N, N′-Bis(3-methylphenyl)-N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine: an excellent triphenylamine-based hole transporter. Acta Crystallogr C 60:o452–o454CrossRef
43.
Zurück zum Zitat Yoshizawa K, Chano A, Ito A, Tanaka K, Yamabe T, Fujita H, Yamauchi J, Shiro M (1992) ESR of the cationic triradical of 1,3,5-tris(diphenylamino)benzene. J Am Chem Soc 114:5994–5998CrossRef Yoshizawa K, Chano A, Ito A, Tanaka K, Yamabe T, Fujita H, Yamauchi J, Shiro M (1992) ESR of the cationic triradical of 1,3,5-tris(diphenylamino)benzene. J Am Chem Soc 114:5994–5998CrossRef
44.
Zurück zum Zitat Cheng JA, Cheng PJ (2010) Crystal study of N, N′-diphenyl-N, N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine. J Chem Crystallogr 40:557–560CrossRef Cheng JA, Cheng PJ (2010) Crystal study of N, N′-diphenyl-N, N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine. J Chem Crystallogr 40:557–560CrossRef
45.
Zurück zum Zitat Lima CFRAC, Rocha MAA, Melo A, Gomes LR, Low JN, Santos LMNBF (2011) Structural and thermodynamic characterization of polyphenylbenzenes. J Phys Chem A 115:11876–11888CrossRef Lima CFRAC, Rocha MAA, Melo A, Gomes LR, Low JN, Santos LMNBF (2011) Structural and thermodynamic characterization of polyphenylbenzenes. J Phys Chem A 115:11876–11888CrossRef
46.
Zurück zum Zitat Ribeiro da Silva MAV, Santos LMNBF, Lima LMSS (2008) Standard molar enthalpies of formation and of sublimation of the terphenyl isomers. J Chem Thermodyn 43:375–385CrossRef Ribeiro da Silva MAV, Santos LMNBF, Lima LMSS (2008) Standard molar enthalpies of formation and of sublimation of the terphenyl isomers. J Chem Thermodyn 43:375–385CrossRef
47.
Zurück zum Zitat Lima LMSS (2009) Estudo Energético de Alguns Hidrocarbonetos Aromáticos Policíclicos e Polifenilos. Ph.D. Dissertation, University of Porto, Portugal Lima LMSS (2009) Estudo Energético de Alguns Hidrocarbonetos Aromáticos Policíclicos e Polifenilos. Ph.D. Dissertation, University of Porto, Portugal
48.
Zurück zum Zitat Venables JA, Spiller GDT, Hanbucken M (1984) Nucleation and growth of thin films. Rep Prog Phys 47:399–459CrossRef Venables JA, Spiller GDT, Hanbucken M (1984) Nucleation and growth of thin films. Rep Prog Phys 47:399–459CrossRef
49.
Zurück zum Zitat Zhang Z, Lagally MG (1997) Atomistic processes in the early stages of thin-film growth. Science 276:377–383CrossRef Zhang Z, Lagally MG (1997) Atomistic processes in the early stages of thin-film growth. Science 276:377–383CrossRef
Metadaten
Titel
Thin film deposition of organic hole transporting materials: optical, thermodynamic and morphological properties of naphthyl-substituted benzidines
verfasst von
José C. S. Costa
Adélio Mendes
Luís M. N. B. F. Santos
Publikationsdatum
12.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 18/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2547-2

Weitere Artikel der Ausgabe 18/2018

Journal of Materials Science 18/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.