Skip to main content

2016 | OriginalPaper | Buchkapitel

4. Time-Dependent Viscoplastic Model for Dislocation Generation During the Cooling Process in the Silicon Ingot

verfasst von : Maohua Lin, Qingde Chen, C. T. Tsai

Erschienen in: Challenges in Mechanics of Time Dependent Materials, Volume 2

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Silicon growth is a process in which a silicon ingot is solidified from the melted and then cooled to the room temperature through the control of multi-heater. Dislocation densities are generated in the ingot by excessed thermal stresses caused by the nonuniform temperature field in the ingot. The generation of the dislocation density is considered as s a process of viscoplastic deformation. A three dimensional transient finite element model based on the Haasen viscoplastic constitutive model (HAS) is developed to evaluate the dislocation densities generated in silicon ingots grown by directional solidification process. The stress fields and dislocation densities generated in silicon ingots are the two major parameters for the evaluation of ingot quality. These two results calculated by HAS model are compared with those obtained from CRSS model. The result demonstrates that HAS model is more accurate than CRSS model for the calculation of dislocation densities and stresses during the cooling process of silicon ingot because of the consideration of time-dependent viscoplastic deformation in HAS model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Poullikkas, G. Kourtis, I. Hadjipaschalis, Parametric analysis for the installation of solar dish technologies in Mediterranean regions. Renew. Sust. Energ. Rev. 14, 2772–2783 (2010)CrossRef A. Poullikkas, G. Kourtis, I. Hadjipaschalis, Parametric analysis for the installation of solar dish technologies in Mediterranean regions. Renew. Sust. Energ. Rev. 14, 2772–2783 (2010)CrossRef
2.
Zurück zum Zitat G.E. Dieter, Mechanical Metallurgy (McGraw-Hill, New York, 1976) G.E. Dieter, Mechanical Metallurgy (McGraw-Hill, New York, 1976)
3.
Zurück zum Zitat P. Haasen, Zur plastischen verformung von Germanium und InSb. Zeitschrift für Physik 167, 461–467 (1962)CrossRef P. Haasen, Zur plastischen verformung von Germanium und InSb. Zeitschrift für Physik 167, 461–467 (1962)CrossRef
4.
Zurück zum Zitat H. Alexander, P. Haasen, Dislocations and plastic flow in the diamond structure. Solid State Phys. 22, 27–158 (1969) H. Alexander, P. Haasen, Dislocations and plastic flow in the diamond structure. Solid State Phys. 22, 27–158 (1969)
5.
Zurück zum Zitat I. Yonenaga, K. Sumino, Dislocation dynamics in the plastic deformation of silicon crystals I. Experiments. Phys. Status Solidi (a) 50, 685–693 (1978)CrossRef I. Yonenaga, K. Sumino, Dislocation dynamics in the plastic deformation of silicon crystals I. Experiments. Phys. Status Solidi (a) 50, 685–693 (1978)CrossRef
6.
Zurück zum Zitat M. Suezawa, K. Sumino, I. Yonenaga, Dislocation dynamics in the plastic deformation of silicon crystals. II. Theoretical analysis of experimental results. Phys. Status Solidi (a) 51, 217–226 (1979)CrossRef M. Suezawa, K. Sumino, I. Yonenaga, Dislocation dynamics in the plastic deformation of silicon crystals. II. Theoretical analysis of experimental results. Phys. Status Solidi (a) 51, 217–226 (1979)CrossRef
7.
Zurück zum Zitat I. Yonenaga, K. Sumino, K. Hoshi, Mechanical strength of silicon crystals as a function of the oxygen concentration. J Appl. Phys. 56, 2346–2350 (1984)CrossRef I. Yonenaga, K. Sumino, K. Hoshi, Mechanical strength of silicon crystals as a function of the oxygen concentration. J Appl. Phys. 56, 2346–2350 (1984)CrossRef
8.
Zurück zum Zitat K. Sumino, M. Imai, Interaction of dislocations with impurities in silicon crystals studied by in situ X-ray topography. Philos. Mag. A 47, 753–766 (1983)CrossRef K. Sumino, M. Imai, Interaction of dislocations with impurities in silicon crystals studied by in situ X-ray topography. Philos. Mag. A 47, 753–766 (1983)CrossRef
9.
Zurück zum Zitat C. Tsai, O. Dillon, R. De Angelis, The constitutive equation for silicon and its use in crystal growth modeling. J. Eng. Mater. Technol. 112, 183–187 (1990)CrossRef C. Tsai, O. Dillon, R. De Angelis, The constitutive equation for silicon and its use in crystal growth modeling. J. Eng. Mater. Technol. 112, 183–187 (1990)CrossRef
10.
Zurück zum Zitat J. Moosbrugger, Continuum slip viscoplasticity with the Haasen constitutive model: application to CdTe single crystal inelasticity. Int. J. Plast. 11, 799–826 (1995)MATHCrossRef J. Moosbrugger, Continuum slip viscoplasticity with the Haasen constitutive model: application to CdTe single crystal inelasticity. Int. J. Plast. 11, 799–826 (1995)MATHCrossRef
11.
Zurück zum Zitat S. Pendurti, V. Prasad, H. Zhang, Modelling dislocation generation in high pressure Czochralski growth of InP single crystals: part I. Construction of a visco-plastic deformation model. Model. Simul. Mater. Sci. Eng. 13, 249 (2005)CrossRef S. Pendurti, V. Prasad, H. Zhang, Modelling dislocation generation in high pressure Czochralski growth of InP single crystals: part I. Construction of a visco-plastic deformation model. Model. Simul. Mater. Sci. Eng. 13, 249 (2005)CrossRef
12.
Zurück zum Zitat S. Nakano, X. Chen, B. Gao, K. Kakimoto, Numerical analysis of cooling rate dependence on dislocation density in multicrystalline silicon for solar cells. J. Cryst. Growth 318, 280–282 (2011)CrossRef S. Nakano, X. Chen, B. Gao, K. Kakimoto, Numerical analysis of cooling rate dependence on dislocation density in multicrystalline silicon for solar cells. J. Cryst. Growth 318, 280–282 (2011)CrossRef
13.
Zurück zum Zitat X. Chen, S. Nakano, L. Liu, K. Kakimoto, Study on thermal stress in a silicon ingot during a unidirectional solidification process. J. Cryst. Growth 310, 4330–4335 (2008)CrossRef X. Chen, S. Nakano, L. Liu, K. Kakimoto, Study on thermal stress in a silicon ingot during a unidirectional solidification process. J. Cryst. Growth 310, 4330–4335 (2008)CrossRef
14.
Zurück zum Zitat X. Chen, S. Nakano, K. Kakimoto, Three-dimensional global analysis of thermal stress and dislocations in a silicon ingot during a unidirectional solidification process with a square crucible. J. Cryst. Growth 312, 3261–3266 (2010)CrossRef X. Chen, S. Nakano, K. Kakimoto, Three-dimensional global analysis of thermal stress and dislocations in a silicon ingot during a unidirectional solidification process with a square crucible. J. Cryst. Growth 312, 3261–3266 (2010)CrossRef
15.
Zurück zum Zitat C. Parfeniuk, F. Weinberg, I. Samarasekera, C. Schvezov, L. Li, Measured critical resolved shear stress and calculated temperature and stress fields during growth of CdZnTe. J. Cryst. Growth 119, 261–270 (1992)CrossRef C. Parfeniuk, F. Weinberg, I. Samarasekera, C. Schvezov, L. Li, Measured critical resolved shear stress and calculated temperature and stress fields during growth of CdZnTe. J. Cryst. Growth 119, 261–270 (1992)CrossRef
16.
Zurück zum Zitat G. Meduoye, D. Bacon, K. Evans, Computer modelling of temperature and stress distributions in LEC-grown GaAs crystals. J. Cryst. Growth 108, 627–636 (1991)CrossRef G. Meduoye, D. Bacon, K. Evans, Computer modelling of temperature and stress distributions in LEC-grown GaAs crystals. J. Cryst. Growth 108, 627–636 (1991)CrossRef
17.
Zurück zum Zitat M. Duseaux, Temperature profile and thermal stress calculations in GaAs crystals growing from the melt. J. Cryst. Growth 61, 576–590 (1983)CrossRef M. Duseaux, Temperature profile and thermal stress calculations in GaAs crystals growing from the melt. J. Cryst. Growth 61, 576–590 (1983)CrossRef
18.
Zurück zum Zitat S. Motakef, A.F. Witt, Thermoelastic analysis of GaAs in LEC growth configuration: I. Effect of liquid encapsulation on thermal stresses. J. Cryst. Growth 80, 37–50 (1987)CrossRef S. Motakef, A.F. Witt, Thermoelastic analysis of GaAs in LEC growth configuration: I. Effect of liquid encapsulation on thermal stresses. J. Cryst. Growth 80, 37–50 (1987)CrossRef
19.
Zurück zum Zitat W. Rosch, F. Carlson, Computed stress fields in GaAs during vertical Bridgman growth. J. Cryst. Growth 109, 75–81 (1991)CrossRef W. Rosch, F. Carlson, Computed stress fields in GaAs during vertical Bridgman growth. J. Cryst. Growth 109, 75–81 (1991)CrossRef
20.
Zurück zum Zitat A.S. Jordan, R. Caruso, A. Von Neida, A thermoelastic analysis of dislocation generation in pulled GaAs crystals. J. Bell Syst. Technol. 59, 593–637 (1980)CrossRef A.S. Jordan, R. Caruso, A. Von Neida, A thermoelastic analysis of dislocation generation in pulled GaAs crystals. J. Bell Syst. Technol. 59, 593–637 (1980)CrossRef
21.
Zurück zum Zitat A. Jordan, A. Von Neida, R. Caruso, The theoretical and experimental fundamentals of decreasing dislocations in melt grown GaAs and InP. J. Cryst. Growth 79, 243–262 (1986)CrossRef A. Jordan, A. Von Neida, R. Caruso, The theoretical and experimental fundamentals of decreasing dislocations in melt grown GaAs and InP. J. Cryst. Growth 79, 243–262 (1986)CrossRef
22.
Zurück zum Zitat O. Dillon Jr., C. Tsai, R. De Angelis, Dislocation dynamics during the growth of silicon ribbon. J. Appl. Phys. 60, 1784–1792 (1986)CrossRef O. Dillon Jr., C. Tsai, R. De Angelis, Dislocation dynamics during the growth of silicon ribbon. J. Appl. Phys. 60, 1784–1792 (1986)CrossRef
23.
Zurück zum Zitat C. Tsai, M. Yao, A. Chait, Prediction of dislocation generation during Bridgman growth of GaAs crystals. J. Cryst. Growth 125, 69–80 (1992)CrossRef C. Tsai, M. Yao, A. Chait, Prediction of dislocation generation during Bridgman growth of GaAs crystals. J. Cryst. Growth 125, 69–80 (1992)CrossRef
24.
Zurück zum Zitat C. Tsai, A. Gulluoglu, C. Hartley, A crystallographic methodology for modeling dislocation dynamics in GaAs crystals grown from melt. J. Appl. Phys. 73, 1650–1656 (1993)CrossRef C. Tsai, A. Gulluoglu, C. Hartley, A crystallographic methodology for modeling dislocation dynamics in GaAs crystals grown from melt. J. Appl. Phys. 73, 1650–1656 (1993)CrossRef
25.
Zurück zum Zitat K. Sumino, I. Yonenaga, Dislocation dynamics and mechanical behaviour of elemental and compound semiconductors. Phys. Status Solidi (a) 138, 573–581 (1993)CrossRef K. Sumino, I. Yonenaga, Dislocation dynamics and mechanical behaviour of elemental and compound semiconductors. Phys. Status Solidi (a) 138, 573–581 (1993)CrossRef
26.
Zurück zum Zitat N. Subramanyam, C. Tsai, Dislocation reduction in GaAs crystal grown from the Czochralski process. J. Mater. Process Technol. 55, 278–287 (1995)CrossRef N. Subramanyam, C. Tsai, Dislocation reduction in GaAs crystal grown from the Czochralski process. J. Mater. Process Technol. 55, 278–287 (1995)CrossRef
27.
Zurück zum Zitat X. Chen, S. Nakano, K. Kakimoto, 3D numerical analysis of the influence of material property of a crucible on stress and dislocation in multicrystalline silicon for solar cells. J. Cryst. Growth 318, 259–264 (2011)CrossRef X. Chen, S. Nakano, K. Kakimoto, 3D numerical analysis of the influence of material property of a crucible on stress and dislocation in multicrystalline silicon for solar cells. J. Cryst. Growth 318, 259–264 (2011)CrossRef
28.
Zurück zum Zitat N. Zhou, M. Lin, M. Wan, L. Zhou, Lowering dislocation density of directionally grown multicrystalline silicon ingots for solar cells by simplifying their post-solidification processes—a simulation approach. J. Therm. Stresses 38, 146–155 (2015)CrossRef N. Zhou, M. Lin, M. Wan, L. Zhou, Lowering dislocation density of directionally grown multicrystalline silicon ingots for solar cells by simplifying their post-solidification processes—a simulation approach. J. Therm. Stresses 38, 146–155 (2015)CrossRef
29.
Zurück zum Zitat N. Zhou, M. Lin, L. Zhou, Q. Hu, H. Fang, S. Wang, A modified cooling process in directional solidification of multicrystalline silicon. J. Cryst. Growth 381, 22–26 (2013)CrossRef N. Zhou, M. Lin, L. Zhou, Q. Hu, H. Fang, S. Wang, A modified cooling process in directional solidification of multicrystalline silicon. J. Cryst. Growth 381, 22–26 (2013)CrossRef
Metadaten
Titel
Time-Dependent Viscoplastic Model for Dislocation Generation During the Cooling Process in the Silicon Ingot
verfasst von
Maohua Lin
Qingde Chen
C. T. Tsai
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-22443-5_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.