Skip to main content

2010 | OriginalPaper | Buchkapitel

11. Time-To-Failure Models for Selected Failure Mechanisms in Integrated Circuits

verfasst von : J.W. McPherson

Erschienen in: Reliability Physics and Engineering

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Advanced integrated circuits (ICs) are very complex, both in terms of their design and in their usage of many dissimilar materials (semiconductors, insulators, metals, plastic molding compounds, etc.). For cost reductions per device and improved performance, scaling of device geometries has played a critically important role in the success of semiconductors. This scaling (where device geometries are generally reduced by 0.7x for each new technology node and tend to conform to Moore’s Law) has caused the electric fields in the materials to rise (bringing the materials ever closer to their breakdown strength) and current densities in the metallization to rise causing electromigration (EM) concerns.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Moore’s Law, attributed to Gordon Moore, states that the transistor density on ICs tends to double every 18–24 months.
 
2
Recall from Chapter 4 that a flux divergence represents the net flow of material into or out of a region of interest. A flux divergence can result in the accumulation or depletion of metal ions in the region of interest. Microstructure differences, such as grain size differences, can result in flux divergences.
 
3
Vacancy is simply a vacant lattice site. A vacancy represents free space (a missing atom) and, as such, a clustering of vacancies can result in void formation. A discussion of vacancies can be found in Chapter 12.
 
4
Grain boundary (or interface) transport generally dominates for T < 0.5Tmelt, where Tmelt is the melting temperature of the metal (expressed in Kelvin). Bulk (within grain or lattice) transport can dominate for T > 0.5Tmelt. The activation energy for grain boundary transport Qgb is roughly half that of bulk transport Qbulk.
 
5
Grain sizes are not really as regular/uniform as illustrated in Fig. 11.3. Grain sizes are generally lognormally distributed.
 
6
Via is the term used to describe the physical/electrical connection of an upper level of metal to a lower level of metal through a dielectric layer.
 
7
Up (into via) or down (into via) refers to the electron-flow direction.
 
8
Drift and diffusion (backflow) mechanisms were discussed in Chapter 6. If the backflow pressure (created by the accumulation of material) starts to cancel the drift-induced pressure, then net material flow ceases.
 
9
For Al-alloys, stripe widths of approximately 3 μm are typically used for EM testing.
 
10
It is assumed here that the average of the positive pulses is greater than the average of the negative pulses.
 
11
Tabs (extra metal extensions) at the cathode-end connection (acting as a reservoir/source of additional metal ions) can slow down the voiding rate and thus can improve the time-to-failure.
 
12
Jim Black was the first to propose a current density exponent of n=2 for electromigration in Al-alloys, without barrier layers, where the void-nucleation phase tends to dominate the time-to-failure. However, n=2 is not valid for all metal systems, e.g., n=1 is used for Cu metallization.
 
13
The current I, as used here, is a virtual stress (discussed in Section 8.​4) because TF depends strongly on the dimensions of the contact. The use of a real stress, such as current density J(=I/Area), would normally be preferred. However, due to current crowding effects in the small contact window, the current density is very non-uniform and difficult to describe. For this reason, the virtual stress current I is used.
 
14
Joule (or self) heating can be an important issue for contacts. Even though the ambient temperature may be held constant, the actual contact temperature can vary greatly with the current level applied. If the self heating is not properly accounted for, then very high apparent n values are obtained.
 
15
This is normally referred to as plastic (versus elastic) deformation. Elastic deformations tend to produce no damage to the material while plastic deformations tend to cause some amount of permanent change to the material.
 
16
Generally, metals will tend to flow in order to relieve the stress in the material. Unfortunately, such mass flow can result in notching/voiding in the metal.
 
17
Grain boundaries which are nearly perpendicular to the metal stripe length.
 
18
As discussed in Chapter 12, the strain energy reduction/release is greater than the energy increase associated with the creation of new surfaces.
 
19
The metallization on a chip is constrained (fixed strain) due to the hard dielectrics surrounding the metallization. The creep, in this case, is a stress-relaxation mechanism under fixed strain which can lead to void formation.
 
20
This equation is usually referred to as the McPherson and Dunn Model for stress migration in interconnects.
 
21
The prefactor (T0−T), in Eq. 11.6, can be expressed in °C or K, since this is a difference of two temperatures. However, the temperature in the exponential term must be expressed in K.
 
22
The breakdown current is determined by ramping the current to breakdown. If the metal stripe has a notch/void in it, then the breakdown current should be lower.
 
23
On a chip, there can be several levels of metallization, stacked on top of one another with a layer of dielectric in between metal levels. The via is an electrical connection, through the dielectric layer(s), from an upper metal level to a lower metal level.
 
24
The voiding is a stress-relief mechanism as discussed in Chapter 12. Void growth occurs because of vacancy flow due to stress gradients. More vacancies are available in wide Cu-leads versus narrow ones.
 
25
Assembly describes the process used to encapsulate a silicon chip into plastic packaging with electrical connections to the outside world. This process includes: silicon chips are first separated from the wafer (usually by sawing), chips are then attached to a lead frame, the lead frame is then molded in plastic, and finally the leads are trimmed and formed.
 
26
If Al corrosion occurs in a liquid state, the corrosion may have the appearance of simply missing aluminum. If Al corrosion occurs in humidity/moisture, the corrosion product (usually aluminum hydroxide) can be expansive in size and will appear to be black, under an optical microscope, due to its very rough/cracked texture. The volume of the corrosion product, usually Al(OH)3, can be much larger than the volume of Al consumed.
 
27
The corrosion cell is discussed in more detail in Chapter 12.
 
28
The Galvanic Series is discussed in Chapter 12.
 
29
If the ions cannot diffuse away from the region of oxidation/reduction, then a rise in electrical potential will retard the corrosion potential.
 
30
Corrosion activity was measured by monitoring the resistance-rise versus time, for a metal stripe when the test structure was stored in an ammonium-chloride solution.
 
31
100% relative humidity represents saturated water vapor.
 
32
This low value of activation energy (0.3 eV) is typical for wet corrosion mechanisms where the mobility of the diffusing ions is good. Due to a very high concentration of phosphorus in the PSG, liquid droplets of phosphoric acid can develop under humid conditions.
 
33
The phosphorus in the glass is very useful in gettering unwanted sodium ions. The Na-ions, if present, can induce a surface-inversion failure mechanism. The surface-inversion failure mechanism is discussed in Section 11.6.
 
34
Fatigue failure can result from cyclical stresses as discussed in Chapter 12.
 
35
Coffin-Manson model is discussed in more detail in Chapter 12.
 
36
The plastic strain range is outside the normal elastic region. Damage is occurring to the material in the plastic range.
 
37
Additional information on crack propagation can be found in Chapter 12.
 
38
Poly is short for polycrystalline silicon. Doped-poly has been a common electrode material for MOSFETs for many years. Advanced ICs may use metal gate-electrodes.
 
39
The E-Model was originally introduced as an empirical model and was later given a theoretical thermochemical foundation.
 
40
For MOS-type capacitors on silicon, when stressing in accumulation: \(V_{ox} \cong V_{applied} - 1V\). Whereas, when stressing in inversion: \(V_{ox} \cong V_{applied}\).
 
41
The values for η(m, n) can be found in Chapter 12.
 
42
This range is consistent with effective dipole moments: \(p_{eff} (9,2)\) to \(p_{eff} (9,1)\).
 
43
Remember that a hole is simply a missing bonding electron. Hole capture thus eliminates one of the two electrons in the S-O bond. Therefore, hole capture serves to weaken the bond. Furthermore, the hole (if hot) can also bring energy to the bond to help in the bond-breakage process.
 
44
EPROM is an erasable programmable read-only memory.
 
45
EEPROM is an electrically erasable programmable read-only memory.
 
46
Flash Memories are block-erasable EEPROMs.
 
47
Ramped-to-breakdown testing was extensively discussed in Chapter 10. The ramp-to-breakdown test can be a very important test for interconnect dielectric reliability. Both intrinsic issues (low-k integrity) and extrinsic issues (metal/dielectric defects) can be found in a ramp-to-breakdown test at elevated temperature.
 
48
Lucky electron means that it obtains the maximum possible kinetic energy.
 
49
These energetic electrons are referred to as hot, because their kinetic energy is greater than the average thermal energy (3/2)K B T.
 
50
Normally, each Si-O bond has two electrons in it which are being shared. If the bond is broken (thus forming a dangling bond), depending on the chemical potential (Fermi-level), a dangling bond can be neutral (retains a single electron), can become negative with the trapping of a second electron, or can give up its single electron (hole trap) and become positively charged.
 
51
The gate voltage (Vgs) conditions must be determined that produce the maximum substrate current, for a fixed drain-to-source voltage Vds. For an n-type MOSFET, this could be Vgs = (1/2) Vds for n-type MOSFETs with longer channel lengths (>0.25um) but could be Vgs=Vds for devices with shorter channel lengths. In any case, the voltage conditions which produce the maximum substrate current must be established for the full range of expected device operation.
 
52
It is also possible that some of the H+ ions may be reduced and dispersed within the poly gate electrode and/or diffuse laterally from the gate region.
 
53
Note that for the case m=0.25, the time-to-failure kinetics are four times greater than the degradation kinetics !
 
Literatur
Zurück zum Zitat Dunn, C. and J. McPherson: Recent Observations on VLSI Bond Pad Corrosion Kinetics, J. Electrochem. Soc., 661 (1988). Dunn, C. and J. McPherson: Recent Observations on VLSI Bond Pad Corrosion Kinetics, J. Electrochem. Soc., 661 (1988).
Zurück zum Zitat Flood, J.: Reliability Aspects of Plastic Encapsulated Integrated Circuits, IEEE International Reliability Physics Symposium Proceedings, 95 (1972). Flood, J.: Reliability Aspects of Plastic Encapsulated Integrated Circuits, IEEE International Reliability Physics Symposium Proceedings, 95 (1972).
Zurück zum Zitat Gunn, J., R. Camenga and S. Malik: Rapid Assessment of the Humidity Dependence of IC Failure Modes by Use of Hast, IEEE International Reliability Physics Symposium Proceedings, 66 (1983). Gunn, J., R. Camenga and S. Malik: Rapid Assessment of the Humidity Dependence of IC Failure Modes by Use of Hast, IEEE International Reliability Physics Symposium Proceedings, 66 (1983).
Zurück zum Zitat Koelmans, H.: Metallization Corrosion in Silicon Devices by Moisture-Induced Electrolysis, IEEE International Reliability Physics Symposium Proceedings, 168 (1974). Koelmans, H.: Metallization Corrosion in Silicon Devices by Moisture-Induced Electrolysis, IEEE International Reliability Physics Symposium Proceedings, 168 (1974).
Zurück zum Zitat Lawrence, D.. and J. McPherson: Corrosion Susceptibility of Al-Cu and Al-Cu-Si Films, J. Electrochem. Soc., Vol. 137, 3879 (1990).CrossRef Lawrence, D.. and J. McPherson: Corrosion Susceptibility of Al-Cu and Al-Cu-Si Films, J. Electrochem. Soc., Vol. 137, 3879 (1990).CrossRef
Zurück zum Zitat McPherson, J.: VLSI Corrosion Models: A Comparison of Acceleration Factors, Proceedings of Third Intern. Symp. on Corrosion and Reliability of Electronic Materials and Devices, Electrochem. Soc., Vol. 94–29, 270 (1994). McPherson, J.: VLSI Corrosion Models: A Comparison of Acceleration Factors, Proceedings of Third Intern. Symp. on Corrosion and Reliability of Electronic Materials and Devices, Electrochem. Soc., Vol. 94–29, 270 (1994).
Zurück zum Zitat Paulson, W. and R. Kirk: The Effects of Phosphorus-Doped Passivation Glass on the Corrosion of Aluminum, IEEE International Reliability Physics Symposium Proceedings, 172 (1972). Paulson, W. and R. Kirk: The Effects of Phosphorus-Doped Passivation Glass on the Corrosion of Aluminum, IEEE International Reliability Physics Symposium Proceedings, 172 (1972).
Zurück zum Zitat Peck, D.: The Design and Evaluation of Reliable Plastic-Encapsulated Semiconductor Devices, IEEE International Reliability Physics Symposium Proceedings, 81 (1970). Peck, D.: The Design and Evaluation of Reliable Plastic-Encapsulated Semiconductor Devices, IEEE International Reliability Physics Symposium Proceedings, 81 (1970).
Zurück zum Zitat Peck, D.: A Comprehensive Model for Humidity Testing Correlation, IEEE International Reliability Physics Symposium Proceedings, 44 (1986). Peck, D.: A Comprehensive Model for Humidity Testing Correlation, IEEE International Reliability Physics Symposium Proceedings, 44 (1986).
Zurück zum Zitat Schnable, A. and R. Keen: Failure Mechanisms in Large-Scale Integrated Circuits, IEEE International Reliability Physics Symposium Proceedings, 170 (1969). Schnable, A. and R. Keen: Failure Mechanisms in Large-Scale Integrated Circuits, IEEE International Reliability Physics Symposium Proceedings, 170 (1969).
Zurück zum Zitat Black, J.: A Brief Survey of Some Recent Electromigration Results, IEEE Trans. Electron Dev., ED-16, 338 (1969). Black, J.: A Brief Survey of Some Recent Electromigration Results, IEEE Trans. Electron Dev., ED-16, 338 (1969).
Zurück zum Zitat Blech, I. and H. Sello: The Failure of Thin Aluminum Current-Carrying Strips on Oxidized Silicon, Physics of Failures in Electronics Vol. 5, USAF-RADC Series, 496 (1966). Blech, I. and H. Sello: The Failure of Thin Aluminum Current-Carrying Strips on Oxidized Silicon, Physics of Failures in Electronics Vol. 5, USAF-RADC Series, 496 (1966).
Zurück zum Zitat d-Heurle, F. and P. Ho, Electromigration in Thin Films. In: Thin Films: Interdiffusion and Reactions, John Wiley & Sons, 243 (1978). d-Heurle, F. and P. Ho, Electromigration in Thin Films. In: Thin Films: Interdiffusion and Reactions, John Wiley & Sons, 243 (1978).
Zurück zum Zitat Filippi, R., G. Biery and R. Wachnik: The Electromigration Short-Length Effect in Ti-AlCu-Ti Metallization with Tungsten Plugs, J. Appl. Phys., Vol. 78, 3756 (1995).CrossRef Filippi, R., G. Biery and R. Wachnik: The Electromigration Short-Length Effect in Ti-AlCu-Ti Metallization with Tungsten Plugs, J. Appl. Phys., Vol. 78, 3756 (1995).CrossRef
Zurück zum Zitat Graas, C., H. Le, J. McPherson and R. Havemann, Electromigration Reliability Improvements of W-Plug vias by Titanium Layering, IEEE International Reliability Physics Symposium Proceedings, 173 (1994). Graas, C., H. Le, J. McPherson and R. Havemann, Electromigration Reliability Improvements of W-Plug vias by Titanium Layering, IEEE International Reliability Physics Symposium Proceedings, 173 (1994).
Zurück zum Zitat Hau-Riege, S.: Probabilistic Immortality of Cu Damascene Interconnects, Journal of Applied Physics, 91(4), 2014 (2002).CrossRef Hau-Riege, S.: Probabilistic Immortality of Cu Damascene Interconnects, Journal of Applied Physics, 91(4), 2014 (2002).CrossRef
Zurück zum Zitat Hau-Riege, C. A. P. Marathe, and V. Pham: The Effect of Low-k ILD on the Electromigration Reliability of Cu Interconnects with Different Line Lengths, 41st Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 173 (2003). Hau-Riege, C. A. P. Marathe, and V. Pham: The Effect of Low-k ILD on the Electromigration Reliability of Cu Interconnects with Different Line Lengths, 41st Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 173 (2003).
Zurück zum Zitat Hu, C. et al.: Scaling Effect on Electromigration in On-Chip Cu Wiring, IEEE International Interconnect Conference, 267 (1999). Hu, C. et al.: Scaling Effect on Electromigration in On-Chip Cu Wiring, IEEE International Interconnect Conference, 267 (1999).
Zurück zum Zitat Hu, C., et al.: Effects of Overlayers on Electromigration Reliability Improvement for Cu/Low K Interconnects, 42th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 222 (2004). Hu, C., et al.: Effects of Overlayers on Electromigration Reliability Improvement for Cu/Low K Interconnects, 42th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 222 (2004).
Zurück zum Zitat Huntington, H. and A. Grone: Current Induced Marker Motion in Gold Wires, J. Phys. Chem. Solids, VOL. 20, 76 (1961).CrossRef Huntington, H. and A. Grone: Current Induced Marker Motion in Gold Wires, J. Phys. Chem. Solids, VOL. 20, 76 (1961).CrossRef
Zurück zum Zitat Hussein, M. and J. He: Materials Impact on Interconnect Process Technology and Reliability, IEEE Transactions on Semiconductor Manufacturing, 18(01), 69 (2005).CrossRef Hussein, M. and J. He: Materials Impact on Interconnect Process Technology and Reliability, IEEE Transactions on Semiconductor Manufacturing, 18(01), 69 (2005).CrossRef
Zurück zum Zitat Lane, M., E. Liniger, and J. R. Lloyd: Relationship between interfacial adhesion and electromigration in Cu metallization, J. Appl. Phys., 93(3), 1417 (2003).CrossRef Lane, M., E. Liniger, and J. R. Lloyd: Relationship between interfacial adhesion and electromigration in Cu metallization, J. Appl. Phys., 93(3), 1417 (2003).CrossRef
Zurück zum Zitat Lee, K., X. Lu, E. T. Ogawa, H. Matsuhashi, and P. S. Ho: Electromigration Study of Cu/low k Dual-damascene Interconnects, 40th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 322 (2002). Lee, K., X. Lu, E. T. Ogawa, H. Matsuhashi, and P. S. Ho: Electromigration Study of Cu/low k Dual-damascene Interconnects, 40th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 322 (2002).
Zurück zum Zitat Lloyd, J.: Electromigration in Thin Film Conductors, Semicond. Sci. Technol. 12, 1177 (1997).CrossRef Lloyd, J.: Electromigration in Thin Film Conductors, Semicond. Sci. Technol. 12, 1177 (1997).CrossRef
Zurück zum Zitat Maiz, J.: Characterization of Electromigration under Bidirectional and Pulsed Unidirectional Currents, IEEE International Reliability Physics Symposium Proceedings, 220 (1989). Maiz, J.: Characterization of Electromigration under Bidirectional and Pulsed Unidirectional Currents, IEEE International Reliability Physics Symposium Proceedings, 220 (1989).
Zurück zum Zitat Martin, C. and J. McPherson: Via Electromigration Performance of Ti/W/Al-Cu(2%) Multilayered Metallization, VLSI Multilevel Interconnect Conference Proceedings, 168 (1989). Martin, C. and J. McPherson: Via Electromigration Performance of Ti/W/Al-Cu(2%) Multilayered Metallization, VLSI Multilevel Interconnect Conference Proceedings, 168 (1989).
Zurück zum Zitat McPherson, J., H. Le and C. Graas: Reliability Challenges for Deep Submicron Interconnects, Microelectronics Reliability, Vol. 37, 1469 (1997).CrossRef McPherson, J., H. Le and C. Graas: Reliability Challenges for Deep Submicron Interconnects, Microelectronics Reliability, Vol. 37, 1469 (1997).CrossRef
Zurück zum Zitat Michael, N., C. Kim, P. Gillespie, and R. Augur: Mechanism of Reliability Failure in Cu Interconnects with Ultra-Low Materials, Applied Physics Letters, 83(10), 1959 (2003).CrossRef Michael, N., C. Kim, P. Gillespie, and R. Augur: Mechanism of Reliability Failure in Cu Interconnects with Ultra-Low Materials, Applied Physics Letters, 83(10), 1959 (2003).CrossRef
Zurück zum Zitat Oates, A.: Electromigration Failure Distribution of Contacts and Vias as a Function of Stress Conditions in Submicron IC Metallizations, IEEE International Reliability Physics Symposium Proceedings, 164 (1996). Oates, A.: Electromigration Failure Distribution of Contacts and Vias as a Function of Stress Conditions in Submicron IC Metallizations, IEEE International Reliability Physics Symposium Proceedings, 164 (1996).
Zurück zum Zitat Ogawa, E., et al.: Statistics of Electromigration Early Failures in Cu/Oxide Dual-Damascene Interconnects, 39th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 341(2001). Ogawa, E., et al.: Statistics of Electromigration Early Failures in Cu/Oxide Dual-Damascene Interconnects, 39th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 341(2001).
Zurück zum Zitat Ogawa, E., K.-D. Lee, V. A. Blaschke, and P. S. Ho: Electromigration Reliability Issues in Dual-Damascene Cu Interconnections, IEEE Transactions on Reliability, 51(4), 403 (2002).CrossRef Ogawa, E., K.-D. Lee, V. A. Blaschke, and P. S. Ho: Electromigration Reliability Issues in Dual-Damascene Cu Interconnections, IEEE Transactions on Reliability, 51(4), 403 (2002).CrossRef
Zurück zum Zitat Ondrusek, J., C. Dunn and J. McPherson: Kinetics of Contact Wearout for Silicided(TiSi2) and Nonsilicided Contacts, IEEE International Reliability Physics Symposium Proceedings, 154 (1987). Ondrusek, J., C. Dunn and J. McPherson: Kinetics of Contact Wearout for Silicided(TiSi2) and Nonsilicided Contacts, IEEE International Reliability Physics Symposium Proceedings, 154 (1987).
Zurück zum Zitat Park, Y. Park, K.-D. Lee and W. R. Hunter, 43th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 18 (2005). Park, Y. Park, K.-D. Lee and W. R. Hunter, 43th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 18 (2005).
Zurück zum Zitat Shatzkes, M. and J. R. Lloyd: A Model for Conductor Failure Considering Concurrently with Electromigration Resulting in a Current Exponent of 2, J. Appl. Physics, Vol. 59, 3890 (1986).CrossRef Shatzkes, M. and J. R. Lloyd: A Model for Conductor Failure Considering Concurrently with Electromigration Resulting in a Current Exponent of 2, J. Appl. Physics, Vol. 59, 3890 (1986).CrossRef
Zurück zum Zitat Steenwyk, S. and E. Kankowski: Electromigration in Aluminum to Ta-Silicide Contacts, IEEE International Reliability Physics Symposium Proceedings, 30 (1986). Steenwyk, S. and E. Kankowski: Electromigration in Aluminum to Ta-Silicide Contacts, IEEE International Reliability Physics Symposium Proceedings, 30 (1986).
Zurück zum Zitat Ting, L., J. May, W. Hunter and J. McPherson: AC Electromigration Characterization and Modeling of Multilayered Interconnects, IEEE International Reliability Physics Symposium Proceedings, 311 (1993). Ting, L., J. May, W. Hunter and J. McPherson: AC Electromigration Characterization and Modeling of Multilayered Interconnects, IEEE International Reliability Physics Symposium Proceedings, 311 (1993).
Zurück zum Zitat Vaidya, S. et al.: Electromigration Induced Shallow Junction Leakage with Al/Poly-Si Metallization, J. Electrochem. Soc., Vol. 130, 496 (1983).CrossRef Vaidya, S. et al.: Electromigration Induced Shallow Junction Leakage with Al/Poly-Si Metallization, J. Electrochem. Soc., Vol. 130, 496 (1983).CrossRef
Zurück zum Zitat Vaidya, S., et al.: Shallow Junction Cobalt Silicide Contacts with Enhanced Electromigration Resistance, J. Appl. Phys. Vol. 55, 3514 (1984).CrossRef Vaidya, S., et al.: Shallow Junction Cobalt Silicide Contacts with Enhanced Electromigration Resistance, J. Appl. Phys. Vol. 55, 3514 (1984).CrossRef
Zurück zum Zitat Aur, S., A. Chatterjee and T. Polgreen: Hot Electron Reliability and ESD Latent Damage, IEEE International Reliability Physics Symposium Proceedings, 15 (1988). Aur, S., A. Chatterjee and T. Polgreen: Hot Electron Reliability and ESD Latent Damage, IEEE International Reliability Physics Symposium Proceedings, 15 (1988).
Zurück zum Zitat Fang, P., J.T. Yue, and D. Wollesen: A Method to Project Hot-Carrier Induced Punch Through Voltage Reduction for Deep Submicron LDD PMOS FETs at Room and Elevated Temperatures, IEEE International Reliability Physics Symposium Proceedings, 131 (1982). Fang, P., J.T. Yue, and D. Wollesen: A Method to Project Hot-Carrier Induced Punch Through Voltage Reduction for Deep Submicron LDD PMOS FETs at Room and Elevated Temperatures, IEEE International Reliability Physics Symposium Proceedings, 131 (1982).
Zurück zum Zitat LaRosa, G., et al.: NBTI Channel Hot Carrier Efffects in PMOSFETS in Advanced CMOS Technologies, IEEE International Reliability Physics Symposium Proceedings, 282 (1997). LaRosa, G., et al.: NBTI Channel Hot Carrier Efffects in PMOSFETS in Advanced CMOS Technologies, IEEE International Reliability Physics Symposium Proceedings, 282 (1997).
Zurück zum Zitat Liu, Z., et al.: Design Tools for Reliability Analysis, IEEE Design Tools for Reliability Analysis, IEEE Design Automation Conference, pp. 182–185, (2006). Liu, Z., et al.: Design Tools for Reliability Analysis, IEEE Design Tools for Reliability Analysis, IEEE Design Automation Conference, pp. 182–185, (2006).
Zurück zum Zitat Lu, M., et al.: Hot Carrier Degradation in Novel Strained Si n-MOSFETs, IEEE International Reliability Physics Symposium Proceedings, pp. 18–21, (2004). Lu, M., et al.: Hot Carrier Degradation in Novel Strained Si n-MOSFETs, IEEE International Reliability Physics Symposium Proceedings, pp. 18–21, (2004).
Zurück zum Zitat Ong, T., P. Ko and C. Hu: Hot-Carrier Current Modeling and Device Degradation in Surface Channel PMOSFET, IEEE Trans. on Electron Devices, ED-37, 1658 (1990). Ong, T., P. Ko and C. Hu: Hot-Carrier Current Modeling and Device Degradation in Surface Channel PMOSFET, IEEE Trans. on Electron Devices, ED-37, 1658 (1990).
Zurück zum Zitat Snyder, E., D. Cambell, S. Swanson and D. Pierce: Novel Self-Stressing Test Structures for Realistic High-Frequency Reliability Characterization, IEEE International Reliability Physics Symposium Proceedings, 57 (1993). Snyder, E., D. Cambell, S. Swanson and D. Pierce: Novel Self-Stressing Test Structures for Realistic High-Frequency Reliability Characterization, IEEE International Reliability Physics Symposium Proceedings, 57 (1993).
Zurück zum Zitat Takeda, E., R. Izawa, K. Umeda and R. Nagai: AC Hot-Carrier Effects in Scaled MOS Devices, IEEE International Reliability Physics Symposium Proceedings, 118 (1991). Takeda, E., R. Izawa, K. Umeda and R. Nagai: AC Hot-Carrier Effects in Scaled MOS Devices, IEEE International Reliability Physics Symposium Proceedings, 118 (1991).
Zurück zum Zitat Wang, W., et al.: An Integrated Modeling Paradigm of Circuit Reliability for 65 nm CMOS Technology, IEEE Custom Integrated Circuits Conference, pp. 511–514 (2007). Wang, W., et al.: An Integrated Modeling Paradigm of Circuit Reliability for 65 nm CMOS Technology, IEEE Custom Integrated Circuits Conference, pp. 511–514 (2007).
Zurück zum Zitat Wang-Ratkovic, J. et al.: New Understanding of LDD CMOS Hot-Carrier Degradation and Device Lifetime at Cryogenic Temperatures, IEEE International Reliability Physics Symposium Proceedings, 312 (1997). Wang-Ratkovic, J. et al.: New Understanding of LDD CMOS Hot-Carrier Degradation and Device Lifetime at Cryogenic Temperatures, IEEE International Reliability Physics Symposium Proceedings, 312 (1997).
Zurück zum Zitat Yue J.: Reliability. In: ULSI Technology, McGraw-Hill, 657 (1996). Yue J.: Reliability. In: ULSI Technology, McGraw-Hill, 657 (1996).
Zurück zum Zitat Hefley, P. and J. McPherson: The Impact of an External Sodium diffusion Source on the Reliability of MOS Circuitry, IEEE International Reliability Physics Symposium Proceedings, 167 (1988). Hefley, P. and J. McPherson: The Impact of an External Sodium diffusion Source on the Reliability of MOS Circuitry, IEEE International Reliability Physics Symposium Proceedings, 167 (1988).
Zurück zum Zitat Schnable, A.: Failure Mechanisms in Microelectronic Devices, Microelectronics and Reliability, (1988). Schnable, A.: Failure Mechanisms in Microelectronic Devices, Microelectronics and Reliability, (1988).
Zurück zum Zitat Snow, E., A.S. Grove, B.E. Deal, and C.T. Sah: Ion Transport Phenomenon in Insulating Films, J. Appl. Phys. Vol 36, 1664 (1965).CrossRef Snow, E., A.S. Grove, B.E. Deal, and C.T. Sah: Ion Transport Phenomenon in Insulating Films, J. Appl. Phys. Vol 36, 1664 (1965).CrossRef
Zurück zum Zitat Snow, E. and B.E. Deal: Polarization Phenomena and Other Properties of Phosphosilicate Glass Films on Silicon, J. Electrochem. Soc., Vol 113, 263 (1966).CrossRef Snow, E. and B.E. Deal: Polarization Phenomena and Other Properties of Phosphosilicate Glass Films on Silicon, J. Electrochem. Soc., Vol 113, 263 (1966).CrossRef
Zurück zum Zitat Stuart, D.: Calculations of Activation Energy of Ionic Conductivity in Silica Glass by Classical Methods, Journal of the American Ceramic Society, 573 (1954). Stuart, D.: Calculations of Activation Energy of Ionic Conductivity in Silica Glass by Classical Methods, Journal of the American Ceramic Society, 573 (1954).
Zurück zum Zitat Negative-Bias Temperature Instability (NBTI) Negative-Bias Temperature Instability (NBTI)
Zurück zum Zitat Abadeer, W. and W. Ells: Behavior of NBTI Under AC Dynamical Circuit Conditions, IEEE International Reliability Physics Symp., pp. 17–22, (2003). Abadeer, W. and W. Ells: Behavior of NBTI Under AC Dynamical Circuit Conditions, IEEE International Reliability Physics Symp., pp. 17–22, (2003).
Zurück zum Zitat Alam, A., et. al.: A Comprehensive Model of PMOS Negative Bias Temperature Degradation, Microelectronics Reliability, pp. 71–81 (2005). Alam, A., et. al.: A Comprehensive Model of PMOS Negative Bias Temperature Degradation, Microelectronics Reliability, pp. 71–81 (2005).
Zurück zum Zitat Chakravarthi, S. et al.: A Comprehensive Framework for Predictive Modeling of Negative Bias Temperature Instability, IEEE International Reliability Physics Symp. pp. 273–282,(2004). Chakravarthi, S. et al.: A Comprehensive Framework for Predictive Modeling of Negative Bias Temperature Instability, IEEE International Reliability Physics Symp. pp. 273–282,(2004).
Zurück zum Zitat Chen, G., et al.: Dynamic NBTI of PMOS Transistors and Its Impact on Device Lifetime, IEEE International Reliability Physics Symp. pp. 196–202, (2003). Chen, G., et al.: Dynamic NBTI of PMOS Transistors and Its Impact on Device Lifetime, IEEE International Reliability Physics Symp. pp. 196–202, (2003).
Zurück zum Zitat Huard V. and M. Denais: Hole Trapping Effect on Methodology for DC and AC Negative Bias Temperature Instability Measurements in pMOS transistors, IEEE International Reliability Physics Symp. pp. 40–45 (2003). Huard V. and M. Denais: Hole Trapping Effect on Methodology for DC and AC Negative Bias Temperature Instability Measurements in pMOS transistors, IEEE International Reliability Physics Symp. pp. 40–45 (2003).
Zurück zum Zitat Kimizuka, N., et al.,: The Impact of Bias Temperature Instability for Direct-Tunneling in Ultra-thin Gate Oxide on MOSFET Scaling, VLSI Symp. On Tech., pp. 73–74, (1999). Kimizuka, N., et al.,: The Impact of Bias Temperature Instability for Direct-Tunneling in Ultra-thin Gate Oxide on MOSFET Scaling, VLSI Symp. On Tech., pp. 73–74, (1999).
Zurück zum Zitat Krishnan, A., et al.: NBTI Impact on Transistor and Circuit: Models, Mechanisms and Scaling Effects, IEEE-IEDM, pp. 349–352, (2003). Krishnan, A., et al.: NBTI Impact on Transistor and Circuit: Models, Mechanisms and Scaling Effects, IEEE-IEDM, pp. 349–352, (2003).
Zurück zum Zitat Larosa, G., et al.,: NBTI-Channel Hot Carrier Effects in Advanced Sub-Micron PFET Technologies, IEEE Interational Reliability Physics Symp. Proceedings, pp. 282–286 (1997). Larosa, G., et al.,: NBTI-Channel Hot Carrier Effects in Advanced Sub-Micron PFET Technologies, IEEE Interational Reliability Physics Symp. Proceedings, pp. 282–286 (1997).
Zurück zum Zitat Mahaptra, S., et. al.: Negative bias Temperature Instability in CMOS Devices, Microelectronics Reliability, pp. 114–121 (2005). Mahaptra, S., et. al.: Negative bias Temperature Instability in CMOS Devices, Microelectronics Reliability, pp. 114–121 (2005).
Zurück zum Zitat Ogawa, S. and N. Shiono: Generalized Diffusion-Reaction Model for the Low-Field Chaarge Buildup Instability at the Si-SiO2 Interface, Physical Rev. B, p. 4218 (1995). Ogawa, S. and N. Shiono: Generalized Diffusion-Reaction Model for the Low-Field Chaarge Buildup Instability at the Si-SiO2 Interface, Physical Rev. B, p. 4218 (1995).
Zurück zum Zitat Rangan, S., et al.: Universal Recovery Behavior of Negative Bias Temperature Instability, IEEE-IEDM, pp. 341–344.(2003). Rangan, S., et al.: Universal Recovery Behavior of Negative Bias Temperature Instability, IEEE-IEDM, pp. 341–344.(2003).
Zurück zum Zitat Reddy, V., et al.: Impact of Negative Bias Temperature Instability on Digital Circuit Reliability, pp. 248–254, (2002). Reddy, V., et al.: Impact of Negative Bias Temperature Instability on Digital Circuit Reliability, pp. 248–254, (2002).
Zurück zum Zitat Schlunder, C. et al.: Evaluation of MOSFET Reliability in Analog Applications, IEEE, International Reliability Physics Symposium, pp. 5–10, (2003). Schlunder, C. et al.: Evaluation of MOSFET Reliability in Analog Applications, IEEE, International Reliability Physics Symposium, pp. 5–10, (2003).
Zurück zum Zitat Stathis, J. and S. Zafar: The Negative Bias Temperature Instability of MOS Devices: A Review, Microelectronics Reliability, pp. 270–286 (2006). Stathis, J. and S. Zafar: The Negative Bias Temperature Instability of MOS Devices: A Review, Microelectronics Reliability, pp. 270–286 (2006).
Zurück zum Zitat Stress Migration/Stress-Induced Voiding Stress Migration/Stress-Induced Voiding
Zurück zum Zitat Edelstein, D., et al.: Full Copper Wiring in a Sub-0.25 μm CMOS ULSI Technology, IEEE International Electron Devices Meeting Technical Digest, 773 (1997). Edelstein, D., et al.: Full Copper Wiring in a Sub-0.25 μm CMOS ULSI Technology, IEEE International Electron Devices Meeting Technical Digest, 773 (1997).
Zurück zum Zitat Groothuis, S. and W. Schroen: Stress Related Failures Causing Open Metallization, IEEE International Reliability Physics Symposium Proceedings, 1 (1987). Groothuis, S. and W. Schroen: Stress Related Failures Causing Open Metallization, IEEE International Reliability Physics Symposium Proceedings, 1 (1987).
Zurück zum Zitat Harper, J., et al.: Mechanisms for Microstructure Evolution in Electroplated Copper Thin Films Near Room Temperature, Journal of Applied Physics, 86(5), 2516 (1999).CrossRef Harper, J., et al.: Mechanisms for Microstructure Evolution in Electroplated Copper Thin Films Near Room Temperature, Journal of Applied Physics, 86(5), 2516 (1999).CrossRef
Zurück zum Zitat Klema, J., R. Pyle and E. Domangue: Reliability Implications of Nitrogen Contaminated during Deposition of Sputtered Aluminum/Silicon Metal Films, IEEE International Reliability Physics Symposium Proceedings, 1 (1984). Klema, J., R. Pyle and E. Domangue: Reliability Implications of Nitrogen Contaminated during Deposition of Sputtered Aluminum/Silicon Metal Films, IEEE International Reliability Physics Symposium Proceedings, 1 (1984).
Zurück zum Zitat McPherson, J. and C. Dunn: A Model for Stress-Induced Metal Notching and Voiding in VLSI Al-Si Metallization, J. Vac. Sci. Technology B, 1321 (1987). McPherson, J. and C. Dunn: A Model for Stress-Induced Metal Notching and Voiding in VLSI Al-Si Metallization, J. Vac. Sci. Technology B, 1321 (1987).
Zurück zum Zitat McPherson, J.: Accelerated Testing. In: Electronic Materials Handbook, Volume 1 Packaging, ASM International Publishing, 887 (1989). McPherson, J.: Accelerated Testing. In: Electronic Materials Handbook, Volume 1 Packaging, ASM International Publishing, 887 (1989).
Zurück zum Zitat Ogawa, E., J. W. McPherson, J. A. Rosal, K. J. Dickerson, T. - C. Chiu, L. Y. Tsung, M. K. Jain, T. D. Bonifield, J. C. Ondrusek, and W. R. McKee: Stress-Induced Voiding Under Vias Connected To Wide Cu Metal Leads, 40th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 312 (2002). Ogawa, E., J. W. McPherson, J. A. Rosal, K. J. Dickerson, T. - C. Chiu, L. Y. Tsung, M. K. Jain, T. D. Bonifield, J. C. Ondrusek, and W. R. McKee: Stress-Induced Voiding Under Vias Connected To Wide Cu Metal Leads, 40th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 312 (2002).
Zurück zum Zitat Paik, J., J.-K. Jung and Y.-C. Joo: The Dielectric Material Dependence of Stress and Stress Relaxation on the Mechanism of Stress-Voiding of Cu Interconnects, 43th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 195 (2005). Paik, J., J.-K. Jung and Y.-C. Joo: The Dielectric Material Dependence of Stress and Stress Relaxation on the Mechanism of Stress-Voiding of Cu Interconnects, 43th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 195 (2005).
Zurück zum Zitat Von Glasow, A., A. H. Fischer, M. Hierlemann, S. Penka, and F. Ungar: Geometrical Aspects of Stress-Induced Voiding in Copper Interconnects, Advanced Metallization Conference Proceedings (AMC), 161 (2002). Von Glasow, A., A. H. Fischer, M. Hierlemann, S. Penka, and F. Ungar: Geometrical Aspects of Stress-Induced Voiding in Copper Interconnects, Advanced Metallization Conference Proceedings (AMC), 161 (2002).
Zurück zum Zitat Yoshida, K., T. Fujimaki, K. Miyamoto, T. Honma, H. Kaneko, H. Nakazawa, and M. Morita: Stress-Induced Voiding Phenomena for an actual CMOS LSI Interconnects, IEEE International Electron Devices Meeting Technical Digest, 753 (2002). Yoshida, K., T. Fujimaki, K. Miyamoto, T. Honma, H. Kaneko, H. Nakazawa, and M. Morita: Stress-Induced Voiding Phenomena for an actual CMOS LSI Interconnects, IEEE International Electron Devices Meeting Technical Digest, 753 (2002).
Zurück zum Zitat Yue, J., W. Fusten and R. Taylor: Stress Induced Voids in Aluminum Interconnects During IC Processing, IEEE International Reliability Physics Symposium Proceedings, 126 (1985). Yue, J., W. Fusten and R. Taylor: Stress Induced Voids in Aluminum Interconnects During IC Processing, IEEE International Reliability Physics Symposium Proceedings, 126 (1985).
Zurück zum Zitat Yue, J.: Reliability. In: ULSI Technology, McGraw-Hill, 674 (1996). Yue, J.: Reliability. In: ULSI Technology, McGraw-Hill, 674 (1996).
Zurück zum Zitat Blish, R.: Temperature Cycling and Thermal Shock Failure Rate Modeling, IEEE International Reliability Physics Symposium Proceedings, 110 (1997). Blish, R.: Temperature Cycling and Thermal Shock Failure Rate Modeling, IEEE International Reliability Physics Symposium Proceedings, 110 (1997).
Zurück zum Zitat Caruso, H. and A. Dasgupta: A Fundamental Overview of Accelerated-Testing Analytical Models, Proceedings of Annual Rel. and Maintainability Symposium, 389 (1998). Caruso, H. and A. Dasgupta: A Fundamental Overview of Accelerated-Testing Analytical Models, Proceedings of Annual Rel. and Maintainability Symposium, 389 (1998).
Zurück zum Zitat Coffin, L., Met. Eng. Q., Vol 3, 15 (1963). Coffin, L., Met. Eng. Q., Vol 3, 15 (1963).
Zurück zum Zitat Dieter, G.: Mechanical Metallurgy, McGraw-Hill, 467 (1976). Dieter, G.: Mechanical Metallurgy, McGraw-Hill, 467 (1976).
Zurück zum Zitat Dunn, C. and J. McPherson: Temperature Cycling Acceleration Factors in VLSI Applications, IEEE International Reliability Physics Symposium Proceedings, 252 (1990). Dunn, C. and J. McPherson: Temperature Cycling Acceleration Factors in VLSI Applications, IEEE International Reliability Physics Symposium Proceedings, 252 (1990).
Zurück zum Zitat Manson, S.: Thermal Stress and Low-Cycle Fatigue, McGraw-Hill Book Co., New York, (1966). Manson, S.: Thermal Stress and Low-Cycle Fatigue, McGraw-Hill Book Co., New York, (1966).
Zurück zum Zitat Time-Dependent Dielectric Breakdown (TDDB) Time-Dependent Dielectric Breakdown (TDDB)
Zurück zum Zitat Anolick, E. and G. Nelson: Low-Field Time-Dependent Dielectric Integrity, IEEE International Reliability Physics Symposium Proceedings, 8 (1979). Anolick, E. and G. Nelson: Low-Field Time-Dependent Dielectric Integrity, IEEE International Reliability Physics Symposium Proceedings, 8 (1979).
Zurück zum Zitat Berman, A.: Time Zero Dielectric Reliability Test by a Ramp Method, IEEE International Reliability Physics Symposium Proceedings, 204 (1981). Berman, A.: Time Zero Dielectric Reliability Test by a Ramp Method, IEEE International Reliability Physics Symposium Proceedings, 204 (1981).
Zurück zum Zitat Boyko, K. and D. Gerlach: Time Dependent Dielectric Breakdown of 210A Oxides, IEEE International Reliability Physics Symposium Proceedings, 1 (1989). Boyko, K. and D. Gerlach: Time Dependent Dielectric Breakdown of 210A Oxides, IEEE International Reliability Physics Symposium Proceedings, 1 (1989).
Zurück zum Zitat Charparala, P., et al.: Electric Field Dependent Dielectric Breakdown of Intrinsic SiO 2 Films Under Dynamic Stress, IEEE International Reliability Physics Symposium Proceedings, 61 (1996). Charparala, P., et al.: Electric Field Dependent Dielectric Breakdown of Intrinsic SiO 2 Films Under Dynamic Stress, IEEE International Reliability Physics Symposium Proceedings, 61 (1996).
Zurück zum Zitat Chen, I., S. Holland and C. Hu: A Quantitative Physical Model for Time-dependent Breakdown, IEEE International Reliability Physics Symposium Proceedings, 24 (1985). Chen, I., S. Holland and C. Hu: A Quantitative Physical Model for Time-dependent Breakdown, IEEE International Reliability Physics Symposium Proceedings, 24 (1985).
Zurück zum Zitat Cheung, K.: A Physics-Based, Unified Gate-Oxide Breakdown Model, Technical Digest of Papers International Electron Devices Meeting, 719 (1999). Cheung, K.: A Physics-Based, Unified Gate-Oxide Breakdown Model, Technical Digest of Papers International Electron Devices Meeting, 719 (1999).
Zurück zum Zitat Crook, D.: Method of Determining Reliability Screens for Time-Dependent Dielectric Breakdown, IEEE International Reliability Physics Symposium Proceedings, 1 (1979). Crook, D.: Method of Determining Reliability Screens for Time-Dependent Dielectric Breakdown, IEEE International Reliability Physics Symposium Proceedings, 1 (1979).
Zurück zum Zitat Degraeve, R., et al.: New Insights in the Relation Between Electron Trap Generation and the Statistical Properties of Oxide Breakdown, IEEE Trans. Electron Devices 45, 904 (1998). Degraeve, R., et al.: New Insights in the Relation Between Electron Trap Generation and the Statistical Properties of Oxide Breakdown, IEEE Trans. Electron Devices 45, 904 (1998).
Zurück zum Zitat DiMaria, D. and J. Stasiak: Trap Creation in Silicon Dioxide Produced by hot electrons, J. Appl. Physics, Vol 65, 2342 (1989).CrossRef DiMaria, D. and J. Stasiak: Trap Creation in Silicon Dioxide Produced by hot electrons, J. Appl. Physics, Vol 65, 2342 (1989).CrossRef
Zurück zum Zitat DiMaria, D., E. Cartier and D. Arnold: Impact ionization, trap creation, degradation, and breakdown in silicon dioxide films on silicon, J. Appl. Physics, Vol 73, 3367 (1993).CrossRef DiMaria, D., E. Cartier and D. Arnold: Impact ionization, trap creation, degradation, and breakdown in silicon dioxide films on silicon, J. Appl. Physics, Vol 73, 3367 (1993).CrossRef
Zurück zum Zitat Eissa, M., D. A. Ramappa, E. Ogawa, N. Doke, E. M. Zielinski, C. L. Borst, G. Shinn, and A. J.McKerrow: Post-Copper CMP Cleans Challenges for 90 nm Technology, Advanced Metallization Conference Proceedings (AMC), 559 (2004). Eissa, M., D. A. Ramappa, E. Ogawa, N. Doke, E. M. Zielinski, C. L. Borst, G. Shinn, and A. J.McKerrow: Post-Copper CMP Cleans Challenges for 90 nm Technology, Advanced Metallization Conference Proceedings (AMC), 559 (2004).
Zurück zum Zitat Hu, C. and Q. Lu: A Unified Gate Oxide Reliability Model, IEEE International Reliability Physics Symposium Proceedings, 47 (1999). Hu, C. and Q. Lu: A Unified Gate Oxide Reliability Model, IEEE International Reliability Physics Symposium Proceedings, 47 (1999).
Zurück zum Zitat Haase, G., E. T. Ogawa and J. W. McPherson: Breakdown Characteristics of Interconnect Dielectrics, 43th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 466 (2005). Haase, G., E. T. Ogawa and J. W. McPherson: Breakdown Characteristics of Interconnect Dielectrics, 43th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 466 (2005).
Zurück zum Zitat Kimura, M.: Oxide Breakdown Mechanism and Quantum Physical Chemistry for Time-Dependent Dielectric Breakdown, IEEE International Reliability Physics Symposium Proceedings, 190 (1997). Kimura, M.: Oxide Breakdown Mechanism and Quantum Physical Chemistry for Time-Dependent Dielectric Breakdown, IEEE International Reliability Physics Symposium Proceedings, 190 (1997).
Zurück zum Zitat Lee, J., I. Chen and C. Hu: Statistical Modeling of Silicon Dioxide Reliability, IEEE International Reliability Physics Symposium Proceedings, 131 (1988). Lee, J., I. Chen and C. Hu: Statistical Modeling of Silicon Dioxide Reliability, IEEE International Reliability Physics Symposium Proceedings, 131 (1988).
Zurück zum Zitat McPherson, J. and D. Baglee: Acceleration factors for Thin Gate Oxide Stressing, IEEE International Reliability Physics Symposium Proceedings, 1 (1985). McPherson, J. and D. Baglee: Acceleration factors for Thin Gate Oxide Stressing, IEEE International Reliability Physics Symposium Proceedings, 1 (1985).
Zurück zum Zitat McPherson, J. and H. Mogul: Underlying Physics of the Thermochemical E-Model in Describing Low-Field Time-Dependent Dielectric Breakdown in SiO 2 Thin Films, J. Appl. Phys., Vol. 84, 1513 (1998).CrossRef McPherson, J. and H. Mogul: Underlying Physics of the Thermochemical E-Model in Describing Low-Field Time-Dependent Dielectric Breakdown in SiO 2 Thin Films, J. Appl. Phys., Vol. 84, 1513 (1998).CrossRef
Zurück zum Zitat McPherson, J., R. Khamankar and A. Shanware: Complementary Model for Intrinsic Time-Dependent Dielectric Breakdown in SiO 2 Dielectrics, J. Appl. Physics, Vol. 88, 5351 (2000).CrossRef McPherson, J., R. Khamankar and A. Shanware: Complementary Model for Intrinsic Time-Dependent Dielectric Breakdown in SiO 2 Dielectrics, J. Appl. Physics, Vol. 88, 5351 (2000).CrossRef
Zurück zum Zitat McPherson, J.: Trends in the Ultimate Breakdown Strength of High Dielectric-Constant Materials, IEEE Trans. On Elect. Devs., Vol. 50, 1771 (2003).CrossRef McPherson, J.: Trends in the Ultimate Breakdown Strength of High Dielectric-Constant Materials, IEEE Trans. On Elect. Devs., Vol. 50, 1771 (2003).CrossRef
Zurück zum Zitat McPherson, J.: Determination of the Nature of Molecular bonding in Silica from Time-Dependent Dielectric Breakdown Data, J. Appl. Physics, Vol. 95, 8101 (2004).CrossRef McPherson, J.: Determination of the Nature of Molecular bonding in Silica from Time-Dependent Dielectric Breakdown Data, J. Appl. Physics, Vol. 95, 8101 (2004).CrossRef
Zurück zum Zitat Moazzami, R., J. Lee and C. Hu: Temperature Acceleration of Time-Dependent Dielectric Breakdown, IEEE Trans. Elect. Devices, Vol. 36, 2462 (1989).CrossRef Moazzami, R., J. Lee and C. Hu: Temperature Acceleration of Time-Dependent Dielectric Breakdown, IEEE Trans. Elect. Devices, Vol. 36, 2462 (1989).CrossRef
Zurück zum Zitat Nicollian, P.: Experimental Evidence for Voltage Driven Breakdown Models in Ultra-Thin Gate Oxides, IEEE International Reliability Physics Symposium, 47 (1999). Nicollian, P.: Experimental Evidence for Voltage Driven Breakdown Models in Ultra-Thin Gate Oxides, IEEE International Reliability Physics Symposium, 47 (1999).
Zurück zum Zitat Noguchi, J., N. Miura, M. Kubo, T. Tamaru, H. Yamaguchi, N. Hamada, K. Makabe, R. Tsuneda and K. Takeda: Cu-Ion-Migration Phenomena and its Influence on TDDB Lifetime in Cu Metallization, 41st Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 287 (2003). Noguchi, J., N. Miura, M. Kubo, T. Tamaru, H. Yamaguchi, N. Hamada, K. Makabe, R. Tsuneda and K. Takeda: Cu-Ion-Migration Phenomena and its Influence on TDDB Lifetime in Cu Metallization, 41st Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 287 (2003).
Zurück zum Zitat Ogawa, E., J. Kim and J. McPherson: Leakage, Breakdown, and TDDB Characteristics of Porous Low-k Silica-Based Interconnect Dielectrics, IEEE-IRPS Proceedings, 166 (2003). Ogawa, E., J. Kim and J. McPherson: Leakage, Breakdown, and TDDB Characteristics of Porous Low-k Silica-Based Interconnect Dielectrics, IEEE-IRPS Proceedings, 166 (2003).
Zurück zum Zitat Ogawa, E., J. Kim, G. S. Haase, H. C. Mogul, and J. W. McPherson: Leakage, Breakdown, and TDDB Characteristics of Porous Low-K Silica-Based Interconnect Dielectrics, 41st Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 166 (2003). Ogawa, E., J. Kim, G. S. Haase, H. C. Mogul, and J. W. McPherson: Leakage, Breakdown, and TDDB Characteristics of Porous Low-K Silica-Based Interconnect Dielectrics, 41st Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 166 (2003).
Zurück zum Zitat Pompl, T., et al.: Change in Acceleration Behavior of Time-Dependent Dielectric Breakdown by the BEOL Process: Indications for Hydrogen Induced Transition in Dominant Degradation Mechanism, IEEE International Reliability Physics Symposium, 388 (2005). Pompl, T., et al.: Change in Acceleration Behavior of Time-Dependent Dielectric Breakdown by the BEOL Process: Indications for Hydrogen Induced Transition in Dominant Degradation Mechanism, IEEE International Reliability Physics Symposium, 388 (2005).
Zurück zum Zitat Schuegraph, K. and C. Hu: Hole Injection Oxide Breakdown Model for Very Low Voltage Lifetime Extrapolations, IEEE International Reliability Physics Symposium Proceedings, 7 (1993). Schuegraph, K. and C. Hu: Hole Injection Oxide Breakdown Model for Very Low Voltage Lifetime Extrapolations, IEEE International Reliability Physics Symposium Proceedings, 7 (1993).
Zurück zum Zitat Suehle, J., et. al.: Field and Temperature Acceleration of Time-Dependent Dielectric Breakdown in Intrinsic Thin SiO 2 , IEEE International Reliability Physics Symposium Proceedings, 120 (1994). Suehle, J., et. al.: Field and Temperature Acceleration of Time-Dependent Dielectric Breakdown in Intrinsic Thin SiO 2 , IEEE International Reliability Physics Symposium Proceedings, 120 (1994).
Zurück zum Zitat Suehle, J. and P. Chaparala: Low Electric Field Breakdown of Thin SiO 2 Films Under Static and Dynamic Stress, IEEE Trans. Elect. Devices, 801 (1997). Suehle, J. and P. Chaparala: Low Electric Field Breakdown of Thin SiO 2 Films Under Static and Dynamic Stress, IEEE Trans. Elect. Devices, 801 (1997).
Zurück zum Zitat Sune, J., D. Jimenez, and E. Miranda: Breakdown Modes and Breakdown Statistics of Ultrathin SiO 2 Gate Oxides, J. High Speed Electronics and Systems, 11, 789 (2001).CrossRef Sune, J., D. Jimenez, and E. Miranda: Breakdown Modes and Breakdown Statistics of Ultrathin SiO 2 Gate Oxides, J. High Speed Electronics and Systems, 11, 789 (2001).CrossRef
Zurück zum Zitat Stathis, J and D. DiMaria: Reliability Projection for Ultra-Thin Oxides at Low Voltage, Technical Digest of Papers International Electron Devices Meeting, 167 (1998). Stathis, J and D. DiMaria: Reliability Projection for Ultra-Thin Oxides at Low Voltage, Technical Digest of Papers International Electron Devices Meeting, 167 (1998).
Zurück zum Zitat Swartz, G.: Gate Oxide Integrity of NMOS Transistor Arrays, IEEE Trans. on Electron Devices, Vol. ED-33, 1826 (1986).CrossRef Swartz, G.: Gate Oxide Integrity of NMOS Transistor Arrays, IEEE Trans. on Electron Devices, Vol. ED-33, 1826 (1986).CrossRef
Zurück zum Zitat Tsu, R., J. W. McPherson, and W. R. McKee: Leakage and Breakdown Reliability Issues Associated with Low-k Dielectrics in a Dual-Damascene Cu Process, 38th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 348 (2000). Tsu, R., J. W. McPherson, and W. R. McKee: Leakage and Breakdown Reliability Issues Associated with Low-k Dielectrics in a Dual-Damascene Cu Process, 38th Annual IEEE International Reliability Physics Symposium Proceedings (IRPS), 348 (2000).
Zurück zum Zitat Wu, E. et. al.: Experimental Evidence of TBD Power-Law for Voltage Dependence of Oxide Breakdown in Ultrathin Gate Oxides, IEEE Trans. On Electron Devices, Vol. 49, 2244 (2002).CrossRef Wu, E. et. al.: Experimental Evidence of TBD Power-Law for Voltage Dependence of Oxide Breakdown in Ultrathin Gate Oxides, IEEE Trans. On Electron Devices, Vol. 49, 2244 (2002).CrossRef
Zurück zum Zitat Wu, E., et. al.: Polarity-Dependent Oxide Breakdown of NFET Devices for Ultra-Thin Gate Oxide, IEEE International Reliability Physics Symposium, 60 (2002). Wu, E., et. al.: Polarity-Dependent Oxide Breakdown of NFET Devices for Ultra-Thin Gate Oxide, IEEE International Reliability Physics Symposium, 60 (2002).
Metadaten
Titel
Time-To-Failure Models for Selected Failure Mechanisms in Integrated Circuits
verfasst von
J.W. McPherson
Copyright-Jahr
2010
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-6348-2_11

Neuer Inhalt