Skip to main content

2020 | OriginalPaper | Buchkapitel

Topology Optimization Using Strain Energy Distribution for 2D Structures

verfasst von : Srinivasan Bairy, Rafaque Ahmad, Hari K. Voruganti

Erschienen in: Advances in Applied Mechanical Engineering

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Optimization is carried out to achieve the best out of given resources while satisfying constraints on performance, state variables, and resources thus avoiding the excessive use of resources and decrease the cost associated. Structural systems need to be designed for a minimum of weight, compliance, displacement, frequency, etc., to save cost and get optimal performance. For this, structural optimization is carried out. Topology optimization is one type of structural optimization in which topology of the structure is changed. Generally, topology optimization is performed using methods like solid isotropic material with penalization (SIMP), level set-based methods, phase field method, evolutionary structural optimization (ESO), and bidirectional evolutionary structural optimization (BESO). In the present work, a modified evolutionary algorithm is proposed for structural optimization with consideration to strain energy distribution. Addition of material is performed on a partially void space instead of material removal. As the final optimum structure bears only a fraction of initial structure, the method of structure growth using addition approach is better for computational efficiency. This method initially takes a void input design domain but to make numerical computation easy, negligible density is assumed. The objective is to achieve critical strain energy per unit volume which is less than the modulus of resilience according to the maximum strain energy criterion. According to the maximum strain energy theory, a safe structure should have strain energy per unit volume less than the modulus of resilience. Hence, the objective is to find a structure satisfying the above criterion with minimum weight. The main focus of the work is to find optimum topology. Effect of multiple loads, rate of material addition, and effect of the magnitude of loads are also considered for structural optimization. The results are close to the results reported in the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bendsoe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications. Springer Bendsoe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications. Springer
2.
Zurück zum Zitat Woon SY, Querin OM, Steven GP (2001) Structural application of a shape optimization method based on a genetic algorithm. Struct Multidiscip Optim 22(1):57–64CrossRef Woon SY, Querin OM, Steven GP (2001) Structural application of a shape optimization method based on a genetic algorithm. Struct Multidiscip Optim 22(1):57–64CrossRef
4.
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1(4):193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1(4):193–202CrossRef
5.
Zurück zum Zitat Bendsoe MP (1995) Optimization of structural topology, shape, and material. Springer, BerlinCrossRef Bendsoe MP (1995) Optimization of structural topology, shape, and material. Springer, BerlinCrossRef
6.
Zurück zum Zitat Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478MathSciNetCrossRef Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478MathSciNetCrossRef
7.
Zurück zum Zitat Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRef Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRef
8.
Zurück zum Zitat Xie YM, Grant PS (1997) Basic evolutionary structural optimization. Evolutionary structural optimization. Springer, London, pp 12–29CrossRef Xie YM, Grant PS (1997) Basic evolutionary structural optimization. Evolutionary structural optimization. Springer, London, pp 12–29CrossRef
9.
Zurück zum Zitat Lagaros ND, Papadrakakis M, Kokossalakis G (2002) Structural optimization using evolutionary algorithms. Comput Struct 80(7):571–589CrossRef Lagaros ND, Papadrakakis M, Kokossalakis G (2002) Structural optimization using evolutionary algorithms. Comput Struct 80(7):571–589CrossRef
10.
Zurück zum Zitat Chu DN, Xie YM, Hira A, Steven GP (1996) Evolutionary structural optimization for problems with stiffness constraints. Finite Elem Anal Des 21(4):239–251CrossRef Chu DN, Xie YM, Hira A, Steven GP (1996) Evolutionary structural optimization for problems with stiffness constraints. Finite Elem Anal Des 21(4):239–251CrossRef
11.
Zurück zum Zitat Abolbashari Hossein M, Shadi K (2006) On various aspects of application of the evolutionary structural optimization method for 2D and 3D continuum structures. Finite Elem Anal Des 42(6):478–491CrossRef Abolbashari Hossein M, Shadi K (2006) On various aspects of application of the evolutionary structural optimization method for 2D and 3D continuum structures. Finite Elem Anal Des 42(6):478–491CrossRef
12.
Zurück zum Zitat Huang X, Xie YM (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43(14):1039–1049CrossRef Huang X, Xie YM (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43(14):1039–1049CrossRef
13.
Zurück zum Zitat Tanskanen P (2002) The evolutionary structural optimization method: theoretical aspects. Comput Methods Appl Mech Eng 191(47):5485–5498CrossRef Tanskanen P (2002) The evolutionary structural optimization method: theoretical aspects. Comput Methods Appl Mech Eng 191(47):5485–5498CrossRef
14.
Zurück zum Zitat Li Q, Steven GP, Xie YM (2001) A simple checkerboard suppression algorithm for evolutionary structural optimization. Struct Multidiscip Optim 22(3):230–239CrossRef Li Q, Steven GP, Xie YM (2001) A simple checkerboard suppression algorithm for evolutionary structural optimization. Struct Multidiscip Optim 22(3):230–239CrossRef
15.
Zurück zum Zitat Li Q, Steven GP, Xie YM (1999) On equivalence between stress criterion and stiffness criterion in evolutionary structural optimization. Struct Multidiscip Optim 18(1):67–73CrossRef Li Q, Steven GP, Xie YM (1999) On equivalence between stress criterion and stiffness criterion in evolutionary structural optimization. Struct Multidiscip Optim 18(1):67–73CrossRef
16.
Zurück zum Zitat Kwok TH, Li Y, Chen Y (2016) A structural topology design method based on principal stress line. Comput Aided Des 80:19–31CrossRef Kwok TH, Li Y, Chen Y (2016) A structural topology design method based on principal stress line. Comput Aided Des 80:19–31CrossRef
17.
Zurück zum Zitat Rajeev S, Krishnamoorthy CS (1992) Discrete optimization of structures using genetic algorithms. J Struct Eng 118(5):1233–1250CrossRef Rajeev S, Krishnamoorthy CS (1992) Discrete optimization of structures using genetic algorithms. J Struct Eng 118(5):1233–1250CrossRef
18.
Zurück zum Zitat Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5):447–465CrossRef Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5):447–465CrossRef
19.
Zurück zum Zitat Balamurugan R, Ramakrishnan CV, Singh N (2008) Performance evaluation of a two-stage adaptive genetic algorithm (TSAGA) in structural topology optimization. Appl Soft Comput 8(4):1607–1624CrossRef Balamurugan R, Ramakrishnan CV, Singh N (2008) Performance evaluation of a two-stage adaptive genetic algorithm (TSAGA) in structural topology optimization. Appl Soft Comput 8(4):1607–1624CrossRef
20.
Zurück zum Zitat Deepak SR, Dinesh M, Sahu DK, Ananthasuresh GK (2009) A comparative study of the formulations and benchmark problems for the topology optimization of compliant mechanisms. J Mech Robot 1(1):011003CrossRef Deepak SR, Dinesh M, Sahu DK, Ananthasuresh GK (2009) A comparative study of the formulations and benchmark problems for the topology optimization of compliant mechanisms. J Mech Robot 1(1):011003CrossRef
21.
Zurück zum Zitat Jog CS (2002) Topology design of structures subjected to periodic loading. J Sound Vib 253(3):687–709CrossRef Jog CS (2002) Topology design of structures subjected to periodic loading. J Sound Vib 253(3):687–709CrossRef
22.
Zurück zum Zitat Nandy AK, Jog CS (2012) Optimization of vibrating structures to reduce radiated noise. Struct Multidiscip Optim 45(5):717–728MathSciNetCrossRef Nandy AK, Jog CS (2012) Optimization of vibrating structures to reduce radiated noise. Struct Multidiscip Optim 45(5):717–728MathSciNetCrossRef
23.
Zurück zum Zitat Querin OM, Steven GP, Xie YM (2000) Evolutionary structural optimization using an additive algorithm. Finite Elem Anal Des 34(3):291–308CrossRef Querin OM, Steven GP, Xie YM (2000) Evolutionary structural optimization using an additive algorithm. Finite Elem Anal Des 34(3):291–308CrossRef
24.
Zurück zum Zitat Blaise B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158. Chu, Nha D (1996) Blaise B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158. Chu, Nha D (1996)
Metadaten
Titel
Topology Optimization Using Strain Energy Distribution for 2D Structures
verfasst von
Srinivasan Bairy
Rafaque Ahmad
Hari K. Voruganti
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-1201-8_69

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.