Skip to main content

2022 | OriginalPaper | Buchkapitel

Trajectory Tracking Control of Omnidirectional Robot Based on Center of Gravity Offset Parameter Estimation

verfasst von : Yina Wang, Sainan Liu, Junyou Yang, Shuoyu Wang

Erschienen in: Intelligent Robotics and Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Omnidirectional mobile robot is applied in people's daily life. In order to properly assist users, the robot must accurately track the predetermined trajectory. However, the robot's tracking accuracy is severely compromised center of gravity shifts induced by the user. An acceleration proportional differential control strategy based on parameter estimation has been proposed in this paper when the center of gravity of the robot is different from its geometric center. The present paper first investigates the dynamic of mechanical structure and constructs a new dynamic model by considering the interference of the center of gravity shift. Secondly, a parameter estimation strategy is designed to estimate the dynamic center of gravity in real time. Then, an acceleration proportional differential controller with center of gravity offset compensation is designed to control the robot. Next, based on Lyapunov stability theory, stability analysis is carried out to prove the asymptotic stability of the proposed control algorithm. Finally, simulation validation shows that the control accuracy of the proposed method is more accurate than proportional differential and adaptive control because they can estimate the center of gravity offset parameters in real time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li, W., Yang, C., Jiang, Y., et al.: Motion planning for omnidirectional wheeled mobile robot by potential field method. J. Adv. Transp. (2017) Li, W., Yang, C., Jiang, Y., et al.: Motion planning for omnidirectional wheeled mobile robot by potential field method. J. Adv. Transp. (2017)
2.
Zurück zum Zitat Jiang, S.Y., Lin, C.Y., Huang, K.T., et al.: Shared control design of a walking-assistant robot. IEEE Trans. Control Syst. Technol. 25(6), 2143–2150 (2017)CrossRef Jiang, S.Y., Lin, C.Y., Huang, K.T., et al.: Shared control design of a walking-assistant robot. IEEE Trans. Control Syst. Technol. 25(6), 2143–2150 (2017)CrossRef
3.
Zurück zum Zitat Thi, K.D.H., Nguyen, M.C., Vo, H.T., et al.: Trajectory tracking control for four-wheeled omnidirectional mobile robot using Backstepping technique aggregated with sliding mode control. In: 2019 First International Symposium on Instrumentation. Control, Artificial Intelligence, and Robotics (ICA-SYMP), pp. 131–134. IEEE, Thailand (2019) Thi, K.D.H., Nguyen, M.C., Vo, H.T., et al.: Trajectory tracking control for four-wheeled omnidirectional mobile robot using Backstepping technique aggregated with sliding mode control. In: 2019 First International Symposium on Instrumentation. Control, Artificial Intelligence, and Robotics (ICA-SYMP), pp. 131–134. IEEE, Thailand (2019)
4.
Zurück zum Zitat Wang, C., Liu, X., Yang, X., et al.: Trajectory tracking of an omni-directional wheeled mobile robot using a model predictive control strategy. Appl. Sci. 8(2), 231 (2018)CrossRef Wang, C., Liu, X., Yang, X., et al.: Trajectory tracking of an omni-directional wheeled mobile robot using a model predictive control strategy. Appl. Sci. 8(2), 231 (2018)CrossRef
5.
Zurück zum Zitat Yang, H., Wang, S., Zuo, Z., et al.: Trajectory tracking for a wheeled mobile robot with an omnidirectional wheel on uneven ground. IET Control Theory Appl. 14(7), 921–929 (2020)MathSciNetCrossRef Yang, H., Wang, S., Zuo, Z., et al.: Trajectory tracking for a wheeled mobile robot with an omnidirectional wheel on uneven ground. IET Control Theory Appl. 14(7), 921–929 (2020)MathSciNetCrossRef
6.
Zurück zum Zitat Ren, C. and Ma, S.: Trajectory tracking control of an omnidirectional mobile robot with friction compensation. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5361–5366. IEEE, Korea (2016) Ren, C. and Ma, S.: Trajectory tracking control of an omnidirectional mobile robot with friction compensation. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5361–5366. IEEE, Korea (2016)
7.
Zurück zum Zitat Jeong, S., Chwa, D.: Sliding-mode-disturbance-observer-based robust tracking control for omnidirectional mobile robots with kinematic and dynamic uncertainties. IEEE/ASME Trans. Mechatron. 26(2), 741–752 (2020)CrossRef Jeong, S., Chwa, D.: Sliding-mode-disturbance-observer-based robust tracking control for omnidirectional mobile robots with kinematic and dynamic uncertainties. IEEE/ASME Trans. Mechatron. 26(2), 741–752 (2020)CrossRef
8.
Zurück zum Zitat Morales, S., Magallanes, J., Delgado, C., et al.: LQR trajectory tracking control of an omnidirectional wheeled mobile robot. In: 2018 IEEE 2nd Colombian Conference on Robotics and Automation (CCRA), pp.1–5. IEEE, Colombia (2018) Morales, S., Magallanes, J., Delgado, C., et al.: LQR trajectory tracking control of an omnidirectional wheeled mobile robot. In: 2018 IEEE 2nd Colombian Conference on Robotics and Automation (CCRA), pp.1–5. IEEE, Colombia (2018)
9.
Zurück zum Zitat Conceição, A.G.S., Dórea, C.E., Martinez, L., et al.: Design and implementation of model-predictive control with friction compensation on an omnidirectional mobile robot. IEEE/ASME Trans. Mechatron. 19(2), 467–476 (2013) Conceição, A.G.S., Dórea, C.E., Martinez, L., et al.: Design and implementation of model-predictive control with friction compensation on an omnidirectional mobile robot. IEEE/ASME Trans. Mechatron. 19(2), 467–476 (2013)
10.
Zurück zum Zitat Dong, F., Jin, D., Zhao, X., et al.: Adaptive robust constraint following control for omnidirectional mobile robot: an indirect approach. IEEE Access 9, 8877–8887 (2021)CrossRef Dong, F., Jin, D., Zhao, X., et al.: Adaptive robust constraint following control for omnidirectional mobile robot: an indirect approach. IEEE Access 9, 8877–8887 (2021)CrossRef
11.
Zurück zum Zitat Wang, Y., Xiong, W., Yang, J., et al.: A robust feedback path tracking control algorithm for an indoor carrier robot considering energy optimization. Energies 12(10), 2010 (2019)CrossRef Wang, Y., Xiong, W., Yang, J., et al.: A robust feedback path tracking control algorithm for an indoor carrier robot considering energy optimization. Energies 12(10), 2010 (2019)CrossRef
12.
Zurück zum Zitat Fresk, E., Wuthier, D., Nikolakopoulos, G.: Generalized center of gravity compensation for multirotors with application to aerial manipulation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4424–4429. IEEE, Canada (2017) Fresk, E., Wuthier, D., Nikolakopoulos, G.: Generalized center of gravity compensation for multirotors with application to aerial manipulation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4424–4429. IEEE, Canada (2017)
13.
Zurück zum Zitat Chang, H., Wang, S., Sun, P.: Stochastic adaptive tracking for a rehabilitative training walker with control constraints considering the omniwheel touchdown characteristic. Int. J. Control 93(5), 1159–1171 (2020)MathSciNetCrossRef Chang, H., Wang, S., Sun, P.: Stochastic adaptive tracking for a rehabilitative training walker with control constraints considering the omniwheel touchdown characteristic. Int. J. Control 93(5), 1159–1171 (2020)MathSciNetCrossRef
14.
Zurück zum Zitat Tan, R., Wang, S., Jiang, Y., et al.: Adaptive control method for path-tracking control of an omni-directional walker compensating for center-of-gravity shifts and load changes. Int. J. Innov. Comput. 7(7B), 4423–4434 (2011) Tan, R., Wang, S., Jiang, Y., et al.: Adaptive control method for path-tracking control of an omni-directional walker compensating for center-of-gravity shifts and load changes. Int. J. Innov. Comput. 7(7B), 4423–4434 (2011)
15.
Zurück zum Zitat Su, Y., Wang, T., Zhang, K., et al.: Adaptive nonlinear control algorithm for a self-balancing robot. IEEE Access 8, 3751–3760 (2019)CrossRef Su, Y., Wang, T., Zhang, K., et al.: Adaptive nonlinear control algorithm for a self-balancing robot. IEEE Access 8, 3751–3760 (2019)CrossRef
16.
Zurück zum Zitat Inoue, R.S., Terra, M.H., Leão, W.M., et al.: Robust recursive linear quadratic regulator for wheeled mobile robots based on optical motion capture cameras. Asian J. Control 21(4), 1605–1618 (2019)MathSciNetCrossRef Inoue, R.S., Terra, M.H., Leão, W.M., et al.: Robust recursive linear quadratic regulator for wheeled mobile robots based on optical motion capture cameras. Asian J. Control 21(4), 1605–1618 (2019)MathSciNetCrossRef
17.
Zurück zum Zitat Wang, Y., Wang, S., Ishida, K., et al.: High path tracking control of an intelligent walking-support robot under time-varying friction and unknown parameters. Adv. Robot. 31(14), 739–752 (2017)CrossRef Wang, Y., Wang, S., Ishida, K., et al.: High path tracking control of an intelligent walking-support robot under time-varying friction and unknown parameters. Adv. Robot. 31(14), 739–752 (2017)CrossRef
18.
Zurück zum Zitat Sharma, M., Kar, I.: Adaptive geometric control of quadrotors with dynamic offset between center of gravity and geometric center. Asian J. Control 23(4), 1923–1935 (2021)MathSciNetCrossRef Sharma, M., Kar, I.: Adaptive geometric control of quadrotors with dynamic offset between center of gravity and geometric center. Asian J. Control 23(4), 1923–1935 (2021)MathSciNetCrossRef
19.
Zurück zum Zitat Shen, Z., Ma, Y., Song, Y.: Robust adaptive fault-tolerant control of mobile robots with varying center of mass. IEEE Trans. Industr. Electron. 65(3), 2419–2428 (2017)CrossRef Shen, Z., Ma, Y., Song, Y.: Robust adaptive fault-tolerant control of mobile robots with varying center of mass. IEEE Trans. Industr. Electron. 65(3), 2419–2428 (2017)CrossRef
20.
Zurück zum Zitat Kumar, R., Deshpande, A.M., Wells, J.Z., et al.: Flight control of sliding arm quadcopter with dynamic structural parameters. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1358–1363. IEEE, USA (2020) Kumar, R., Deshpande, A.M., Wells, J.Z., et al.: Flight control of sliding arm quadcopter with dynamic structural parameters. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1358–1363. IEEE, USA (2020)
21.
Zurück zum Zitat Falanga, D., Kleber, K., Mintchev, S., et al.: The foldable drone: a morphing quadrotor that can squeeze and fly. IEEE Robot. Autom. Lett. 4(2), 209–216 (2018)CrossRef Falanga, D., Kleber, K., Mintchev, S., et al.: The foldable drone: a morphing quadrotor that can squeeze and fly. IEEE Robot. Autom. Lett. 4(2), 209–216 (2018)CrossRef
Metadaten
Titel
Trajectory Tracking Control of Omnidirectional Robot Based on Center of Gravity Offset Parameter Estimation
verfasst von
Yina Wang
Sainan Liu
Junyou Yang
Shuoyu Wang
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-13844-7_13