Skip to main content

2019 | OriginalPaper | Buchkapitel

Transformation of Seafood Wastes into Chemicals and Materials

verfasst von : Huiying Yang, Ning Yan

Erschienen in: Green Chemistry and Chemical Engineering

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

Chitin
An amino-polysaccharide consisting of mainly N-acetyl-β-D-glucosamine units
Nitrogen-containing chemicals
A group of useful chemicals containing nitrogen atom in their chemical structures
Shell biorefinery
Utilization of shell waste such as crab shells to produce valuable chemicals and materials
Shell fractionation
The separation of major components in the shell
Shell waste
The major type of waste generated in seafood industry

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat FAO (2016) Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture. Food and Agriculture Organization of the United Nations FAO (2016) Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture. Food and Agriculture Organization of the United Nations
2.
Zurück zum Zitat Yan N, Chen X (2015) Don’t waste seafood waste: turning cast-off shells into nitrogen-rich chemicals would benefit economies and the environment. Nature 524:155–158PubMedCrossRef Yan N, Chen X (2015) Don’t waste seafood waste: turning cast-off shells into nitrogen-rich chemicals would benefit economies and the environment. Nature 524:155–158PubMedCrossRef
3.
Zurück zum Zitat Kerton FM, Yan N (2017) Fuels, chemicals and materials from the oceans and aquatic sources. Wiley, OxfordCrossRef Kerton FM, Yan N (2017) Fuels, chemicals and materials from the oceans and aquatic sources. Wiley, OxfordCrossRef
4.
Zurück zum Zitat Rødde RH, Einbu A, Vårum KM (2008) A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr Polym 71:388–393CrossRef Rødde RH, Einbu A, Vårum KM (2008) A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr Polym 71:388–393CrossRef
5.
Zurück zum Zitat Gooday GW (1994) Physiology of microbial degradation of chitin and chitosan. In: Biochemistry of microbial degradation. Springer, Dordrecht, pp 279–312CrossRef Gooday GW (1994) Physiology of microbial degradation of chitin and chitosan. In: Biochemistry of microbial degradation. Springer, Dordrecht, pp 279–312CrossRef
6.
Zurück zum Zitat Kim S-K (2010) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Boca RatonCrossRef Kim S-K (2010) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Boca RatonCrossRef
7.
Zurück zum Zitat Hoagland KD, Rosowski JR, Gretz MR, Roemer SC (1993) Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol 29:537–566CrossRef Hoagland KD, Rosowski JR, Gretz MR, Roemer SC (1993) Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol 29:537–566CrossRef
8.
Zurück zum Zitat Chen X, Yang H, Yan N (2016) Shell biorefinery: dream or reality? Chem Eur J 22:13402–13421PubMedCrossRef Chen X, Yang H, Yan N (2016) Shell biorefinery: dream or reality? Chem Eur J 22:13402–13421PubMedCrossRef
9.
Zurück zum Zitat Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRef Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRef
10.
Zurück zum Zitat Chavan S, Deshpande M (2013) Chitinolytic enzymes: an appraisal as a product of commercial potential. Biotechnol Prog 29:833–846PubMedCrossRef Chavan S, Deshpande M (2013) Chitinolytic enzymes: an appraisal as a product of commercial potential. Biotechnol Prog 29:833–846PubMedCrossRef
11.
Zurück zum Zitat Shahidi F, Synowiecki J (1991) Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J Agric Food Chem 39:1527–1532CrossRef Shahidi F, Synowiecki J (1991) Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J Agric Food Chem 39:1527–1532CrossRef
12.
Zurück zum Zitat Ibrahim H, Salama M, El-Banna H (1999) Shrimp’s waste: chemical composition, nutritional value and utilization. Mol Nutr Food Res 43:418–423 Ibrahim H, Salama M, El-Banna H (1999) Shrimp’s waste: chemical composition, nutritional value and utilization. Mol Nutr Food Res 43:418–423
13.
Zurück zum Zitat Ropp RC (2012) Encyclopedia of the alkaline earth compounds. Newnes, New York City Ropp RC (2012) Encyclopedia of the alkaline earth compounds. Newnes, New York City
15.
Zurück zum Zitat Global Industry Analysts, Inc. (GIA) (2016) Chitin and chitosan derivatives-a global strategic business report. Global Industry Analysts, Inc. (GIA) Global Industry Analysts, Inc. (GIA) (2016) Chitin and chitosan derivatives-a global strategic business report. Global Industry Analysts, Inc. (GIA)
16.
Zurück zum Zitat Xie H, Zhang S, Li S (2006) Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem 8:630–633CrossRef Xie H, Zhang S, Li S (2006) Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem 8:630–633CrossRef
17.
Zurück zum Zitat Qin Y, Lu X, Sun N, Rogers RD (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971CrossRef Qin Y, Lu X, Sun N, Rogers RD (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971CrossRef
18.
Zurück zum Zitat Win N, Stevens W (2001) Shrimp chitin as substrate for fungal chitin deacetylase. Appl Microbiol Biotechnol 57:334–341PubMedCrossRef Win N, Stevens W (2001) Shrimp chitin as substrate for fungal chitin deacetylase. Appl Microbiol Biotechnol 57:334–341PubMedCrossRef
19.
Zurück zum Zitat Poirier M, Charlet G (2002) Chitin fractionation and characterization in N, N-dimethylacetamide/lithium chloride solvent system. Carbohydr Polym 50:363–370CrossRef Poirier M, Charlet G (2002) Chitin fractionation and characterization in N, N-dimethylacetamide/lithium chloride solvent system. Carbohydr Polym 50:363–370CrossRef
20.
Zurück zum Zitat Kurita K, Mori S, Nishiyama Y, Harata M (2002) N-alkylation of chitin and some characteristics of the novel derivatives. Polym Bull 48:159–166CrossRef Kurita K, Mori S, Nishiyama Y, Harata M (2002) N-alkylation of chitin and some characteristics of the novel derivatives. Polym Bull 48:159–166CrossRef
21.
Zurück zum Zitat Duan B, Zheng X, Xia Z, Fan X, Guo L, Liu J, Wang Y, Ye Q, Zhang L (2015) Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers. Angew Chem Int Ed 54:5152–5156CrossRef Duan B, Zheng X, Xia Z, Fan X, Guo L, Liu J, Wang Y, Ye Q, Zhang L (2015) Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers. Angew Chem Int Ed 54:5152–5156CrossRef
22.
Zurück zum Zitat Sharma M, Mukesh C, Mondal D, Prasad K (2013) Dissolution of α-chitin in deep eutectic solvents. RSC Adv 3:18149–18155CrossRef Sharma M, Mukesh C, Mondal D, Prasad K (2013) Dissolution of α-chitin in deep eutectic solvents. RSC Adv 3:18149–18155CrossRef
23.
Zurück zum Zitat Devi R, Dhamodharan R (2018) Pretreatment in hot glycerol for facile and green separation of chitin from prawn shell waste. ACS Sustain Chem Eng 6:846–853CrossRef Devi R, Dhamodharan R (2018) Pretreatment in hot glycerol for facile and green separation of chitin from prawn shell waste. ACS Sustain Chem Eng 6:846–853CrossRef
24.
Zurück zum Zitat Valentin R, Molvinger K, Quignard F, Brunel D (2003) Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry. New J Chem 27:1690–1692CrossRef Valentin R, Molvinger K, Quignard F, Brunel D (2003) Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry. New J Chem 27:1690–1692CrossRef
25.
Zurück zum Zitat Reddy KR, Rajgopal K, Maheswari CU, Kantam ML (2006) Chitosan hydrogel: a green and recyclable biopolymer catalyst for aldol and Knoevenagel reactions. New J Chem 30:1549–1552CrossRef Reddy KR, Rajgopal K, Maheswari CU, Kantam ML (2006) Chitosan hydrogel: a green and recyclable biopolymer catalyst for aldol and Knoevenagel reactions. New J Chem 30:1549–1552CrossRef
26.
Zurück zum Zitat Phan NT, Le KK, Nguyen TV, Le NT (2012) Chitosan as a renewable heterogeneous catalyst for the Knoevenagel reaction in ionic liquid as green solvent. ISRN Org Chem 2012:928484PubMedPubMedCentralCrossRef Phan NT, Le KK, Nguyen TV, Le NT (2012) Chitosan as a renewable heterogeneous catalyst for the Knoevenagel reaction in ionic liquid as green solvent. ISRN Org Chem 2012:928484PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Kühbeck D, Saidulu G, Reddy KR, Díaz DD (2012) Critical assessment of the efficiency of chitosan biohydrogel beads as recyclable and heterogeneous organocatalyst for C–C bond formation. Green Chem 14:378–392CrossRef Kühbeck D, Saidulu G, Reddy KR, Díaz DD (2012) Critical assessment of the efficiency of chitosan biohydrogel beads as recyclable and heterogeneous organocatalyst for C–C bond formation. Green Chem 14:378–392CrossRef
28.
Zurück zum Zitat Zhao Y, Tian J-S, Qi X-H, Han Z-N, Zhuang Y-Y, He L-N (2007) Quaternary ammonium salt-functionalized chitosan: an easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J Mol Catal A Chem 271:284–289CrossRef Zhao Y, Tian J-S, Qi X-H, Han Z-N, Zhuang Y-Y, He L-N (2007) Quaternary ammonium salt-functionalized chitosan: an easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J Mol Catal A Chem 271:284–289CrossRef
29.
Zurück zum Zitat Zhao Y, He LN, Zhuang YY, Wang JQ (2008) Dimethyl carbonate synthesis via transesterification catalyzed by quaternary ammonium salt functionalized chitosan. Chin Chem Lett 19:286–290CrossRef Zhao Y, He LN, Zhuang YY, Wang JQ (2008) Dimethyl carbonate synthesis via transesterification catalyzed by quaternary ammonium salt functionalized chitosan. Chin Chem Lett 19:286–290CrossRef
30.
Zurück zum Zitat Qin Y, Zhao W, Yang L, Zhang X, Cui Y (2012) Chitosan-based heterogeneous catalysts for enantioselective Michael reaction. Chirality 24:640–645PubMedCrossRef Qin Y, Zhao W, Yang L, Zhang X, Cui Y (2012) Chitosan-based heterogeneous catalysts for enantioselective Michael reaction. Chirality 24:640–645PubMedCrossRef
31.
Zurück zum Zitat Hollady JE, White JF, Bozell JJ, Johnson D (2007) Top value-added chemicals from biomass. Results of screening for potential candidates from biorefinery lignin, pp 46–48 Hollady JE, White JF, Bozell JJ, Johnson D (2007) Top value-added chemicals from biomass. Results of screening for potential candidates from biorefinery lignin, pp 46–48
32.
Zurück zum Zitat van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597PubMedCrossRef van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597PubMedCrossRef
33.
Zurück zum Zitat Mascal M, Nikitin EB (2009) Dramatic advancements in the saccharide to 5-(chloromethyl)furfural conversion reaction. ChemSusChem 2:859–861PubMedCrossRef Mascal M, Nikitin EB (2009) Dramatic advancements in the saccharide to 5-(chloromethyl)furfural conversion reaction. ChemSusChem 2:859–861PubMedCrossRef
34.
Zurück zum Zitat Omari KW, Besaw JE, Kerton FM (2012) Hydrolysis of chitosan to yield levulinic acid and 5-hydroxymethylfurfural in water under microwave irradiation. Green Chem 14:1480CrossRef Omari KW, Besaw JE, Kerton FM (2012) Hydrolysis of chitosan to yield levulinic acid and 5-hydroxymethylfurfural in water under microwave irradiation. Green Chem 14:1480CrossRef
35.
Zurück zum Zitat Wang Y, Pedersen CM, Deng T, Qiao Y, Hou X (2013) Direct conversion of chitin biomass to 5-hydroxymethylfurfural in concentrated ZnCl 2 aqueous solution. Bioresour Technol 143:384–390PubMedCrossRef Wang Y, Pedersen CM, Deng T, Qiao Y, Hou X (2013) Direct conversion of chitin biomass to 5-hydroxymethylfurfural in concentrated ZnCl 2 aqueous solution. Bioresour Technol 143:384–390PubMedCrossRef
36.
Zurück zum Zitat Li M, Zang H, Feng J, Yan Q, Yu N, Shi X, Cheng B (2015) Efficient conversion of chitosan into 5-hydroxymethylfurfural via hydrothermal synthesis in ionic liquids aqueous solution. Polym Degrad Stab 121:331–339CrossRef Li M, Zang H, Feng J, Yan Q, Yu N, Shi X, Cheng B (2015) Efficient conversion of chitosan into 5-hydroxymethylfurfural via hydrothermal synthesis in ionic liquids aqueous solution. Polym Degrad Stab 121:331–339CrossRef
37.
Zurück zum Zitat Drover MW, Omari KW, Murphy JN, Kerton FM (2012) Formation of a renewable amide, 3-acetamido-5-acetylfuran, via direct conversion of N-acetyl-d-glucosamine. RSC Adv 2:4642–4644CrossRef Drover MW, Omari KW, Murphy JN, Kerton FM (2012) Formation of a renewable amide, 3-acetamido-5-acetylfuran, via direct conversion of N-acetyl-d-glucosamine. RSC Adv 2:4642–4644CrossRef
38.
Zurück zum Zitat Chen X, Chew SL, Kerton FM, Yan N (2014) Direct conversion of chitin into a N-containing furan derivative. Green Chem 16:2204–2212CrossRef Chen X, Chew SL, Kerton FM, Yan N (2014) Direct conversion of chitin into a N-containing furan derivative. Green Chem 16:2204–2212CrossRef
39.
Zurück zum Zitat Chen X, Liu Y, Kerton FM, Yan N (2015) Conversion of chitin and N-acetyl-d-glucosamine into a N-containing furan derivative in ionic liquids. RSC Adv 5:20073–20080CrossRef Chen X, Liu Y, Kerton FM, Yan N (2015) Conversion of chitin and N-acetyl-d-glucosamine into a N-containing furan derivative in ionic liquids. RSC Adv 5:20073–20080CrossRef
40.
Zurück zum Zitat Chen X, Gao Y, Wang L, Chen H, Yan N (2015) Effect of treatment methods on chitin structure and its transformation into nitrogen-containing chemicals. ChemPlusChem 80:1565–1572CrossRefPubMed Chen X, Gao Y, Wang L, Chen H, Yan N (2015) Effect of treatment methods on chitin structure and its transformation into nitrogen-containing chemicals. ChemPlusChem 80:1565–1572CrossRefPubMed
41.
Zurück zum Zitat Liu Y, Rowley CN, Kerton FM (2014) Combined experimental and computational studies on the physical and chemical properties of the renewable amide, 3-acetamido-5-acetylfuran. ChemPhysChem 15:4087–4094PubMedCrossRef Liu Y, Rowley CN, Kerton FM (2014) Combined experimental and computational studies on the physical and chemical properties of the renewable amide, 3-acetamido-5-acetylfuran. ChemPhysChem 15:4087–4094PubMedCrossRef
42.
Zurück zum Zitat Pham TT, Chen X, Yan N, Sperry J (2018) A novel dihydrodifuropyridine scaffold derived from ketones and the chitin-derived heterocycle 3-acetamido-5-acetylfuran. Monatsh Chem 149:857–861CrossRef Pham TT, Chen X, Yan N, Sperry J (2018) A novel dihydrodifuropyridine scaffold derived from ketones and the chitin-derived heterocycle 3-acetamido-5-acetylfuran. Monatsh Chem 149:857–861CrossRef
43.
Zurück zum Zitat Sadiq AD, Chen X, Yan N, Sperry J (2018) Towards the shell biorefinery: sustainable synthesis of the anti-cancer alkaloid proximicin A from chitin. ChemSusChem 11:532–535PubMedCrossRef Sadiq AD, Chen X, Yan N, Sperry J (2018) Towards the shell biorefinery: sustainable synthesis of the anti-cancer alkaloid proximicin A from chitin. ChemSusChem 11:532–535PubMedCrossRef
44.
Zurück zum Zitat Szabolcs Á, Molnár M, Dibó G, Mika LT (2013) Microwave-assisted conversion of carbohydrates to levulinic acid: an essential step in biomass conversion. Green Chem 15:439–445CrossRef Szabolcs Á, Molnár M, Dibó G, Mika LT (2013) Microwave-assisted conversion of carbohydrates to levulinic acid: an essential step in biomass conversion. Green Chem 15:439–445CrossRef
45.
Zurück zum Zitat Gao X, Chen X, Zhang J, Guo W, Jin F, Yan N (2016) Transformation of chitin and waste shrimp shells into acetic acid and pyrrole. ACS Sustain Chem Eng 4:3912–3920CrossRef Gao X, Chen X, Zhang J, Guo W, Jin F, Yan N (2016) Transformation of chitin and waste shrimp shells into acetic acid and pyrrole. ACS Sustain Chem Eng 4:3912–3920CrossRef
46.
Zurück zum Zitat Lobo MDP, Silva FDA, de Castro Landim PG, Da Cruz PR, De Brito TL, De Medeiros SC, Oliveira JTA, Vasconcelos IM, Pereira HDM, Grangeiro TB (2013) Expression and efficient secretion of a functional chitinase from Chromobacterium violaceum in Escherichia coli. BMC Biotechnol 13:46PubMedPubMedCentralCrossRef Lobo MDP, Silva FDA, de Castro Landim PG, Da Cruz PR, De Brito TL, De Medeiros SC, Oliveira JTA, Vasconcelos IM, Pereira HDM, Grangeiro TB (2013) Expression and efficient secretion of a functional chitinase from Chromobacterium violaceum in Escherichia coli. BMC Biotechnol 13:46PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Sashiwa H, Fujishima S, Yamano N, Kawasaki N, Nakayama A, Muraki E, Hiraga K, Oda K, Aiba S-i (2002) Production of N-acetyl-d-glucosamine from α-chitin by crude enzymes from Aeromonas hydrophila H-2330. Carbohydr Res 337:761–763PubMedCrossRef Sashiwa H, Fujishima S, Yamano N, Kawasaki N, Nakayama A, Muraki E, Hiraga K, Oda K, Aiba S-i (2002) Production of N-acetyl-d-glucosamine from α-chitin by crude enzymes from Aeromonas hydrophila H-2330. Carbohydr Res 337:761–763PubMedCrossRef
49.
Zurück zum Zitat Yabushita M, Kobayashi H, Kuroki K, Ito S, Fukuoka A (2015) Catalytic depolymerization of chitin with retention of N-acetyl group. ChemSusChem 8:3760–3763PubMedCrossRef Yabushita M, Kobayashi H, Kuroki K, Ito S, Fukuoka A (2015) Catalytic depolymerization of chitin with retention of N-acetyl group. ChemSusChem 8:3760–3763PubMedCrossRef
50.
Zurück zum Zitat de Moura CM, de Moura JM, Soares NM, de Almeida Pinto LA (2011) Evaluation of molar weight and deacetylation degree of chitosan during chitin deacetylation reaction: used to produce biofilm. Chem Eng Process 50:351–355CrossRef de Moura CM, de Moura JM, Soares NM, de Almeida Pinto LA (2011) Evaluation of molar weight and deacetylation degree of chitosan during chitin deacetylation reaction: used to produce biofilm. Chem Eng Process 50:351–355CrossRef
51.
Zurück zum Zitat Margoutidis G, Parsons V, Bottaro CS, Yan N, Kerton FM (2018) Mechanochemical amorphization of α-chitin and conversion into oligomers of N-acetyl-D-glucosamine. ACS Sustain Chem Eng 6:1662–1669CrossRef Margoutidis G, Parsons V, Bottaro CS, Yan N, Kerton FM (2018) Mechanochemical amorphization of α-chitin and conversion into oligomers of N-acetyl-D-glucosamine. ACS Sustain Chem Eng 6:1662–1669CrossRef
52.
Zurück zum Zitat Chen X, Yang H, Zhong Z, Yan N (2017) Base-catalysed, one-step mechanochemical conversion of chitin and shrimp shells into low molecular weight chitosan. Green Chem 19:2783–2792CrossRef Chen X, Yang H, Zhong Z, Yan N (2017) Base-catalysed, one-step mechanochemical conversion of chitin and shrimp shells into low molecular weight chitosan. Green Chem 19:2783–2792CrossRef
53.
Zurück zum Zitat Pierson Y, Chen X, Bobbink FD, Zhang J, Yan N (2014) Acid-catalyzed chitin liquefaction in ethylene glycol. ACS Sustain Chem Eng 2:2081–2089CrossRef Pierson Y, Chen X, Bobbink FD, Zhang J, Yan N (2014) Acid-catalyzed chitin liquefaction in ethylene glycol. ACS Sustain Chem Eng 2:2081–2089CrossRef
54.
Zurück zum Zitat Zhang J, Yan N (2016) Formic acid-mediated liquefaction of chitin. Green Chem 18:5050–5058CrossRef Zhang J, Yan N (2016) Formic acid-mediated liquefaction of chitin. Green Chem 18:5050–5058CrossRef
55.
Zurück zum Zitat Bobbink FD, Zhang J, Pierson Y, Chen X, Yan N (2015) Conversion of chitin derived N-acetyl-d-glucosamine (NAG) into polyols over transition metal catalysts and hydrogen in water. Green Chem 17:1024–1031CrossRef Bobbink FD, Zhang J, Pierson Y, Chen X, Yan N (2015) Conversion of chitin derived N-acetyl-d-glucosamine (NAG) into polyols over transition metal catalysts and hydrogen in water. Green Chem 17:1024–1031CrossRef
56.
Zurück zum Zitat Kobayashi H, Techikawara K, Fukuoka A (2017) Hydrolytic hydrogenation of chitin to amino sugar alcohol. Green Chem 19:3350–3356CrossRef Kobayashi H, Techikawara K, Fukuoka A (2017) Hydrolytic hydrogenation of chitin to amino sugar alcohol. Green Chem 19:3350–3356CrossRef
57.
Zurück zum Zitat Zeng L, Qin C, Wang L, Li W (2011) Volatile compounds formed from the pyrolysis of chitosan. Carbohydr Polym 83:1553–1557CrossRef Zeng L, Qin C, Wang L, Li W (2011) Volatile compounds formed from the pyrolysis of chitosan. Carbohydr Polym 83:1553–1557CrossRef
58.
Zurück zum Zitat Chen X, Yang H, Hülsey MJ, Yan N (2017) One-step synthesis of N-heterocyclic compounds from carbohydrates over tungsten-based catalysts. ACS Sustain Chem Eng 5:11096–11104CrossRef Chen X, Yang H, Hülsey MJ, Yan N (2017) One-step synthesis of N-heterocyclic compounds from carbohydrates over tungsten-based catalysts. ACS Sustain Chem Eng 5:11096–11104CrossRef
59.
Zurück zum Zitat Fujii S, Kikuchi R, Kushida H (1966) Formation of fructosazine. J Org Chem 31:2239–2241CrossRef Fujii S, Kikuchi R, Kushida H (1966) Formation of fructosazine. J Org Chem 31:2239–2241CrossRef
60.
Zurück zum Zitat Rohovec J, Kotek J, Peters JA, Maschmeyer T (2001) A clean conversion of D-glucosamine hydrochloride to a pyrazine in the presence of phenylboronate or borate. Eur J Org Chem 2001:3899–3901CrossRef Rohovec J, Kotek J, Peters JA, Maschmeyer T (2001) A clean conversion of D-glucosamine hydrochloride to a pyrazine in the presence of phenylboronate or borate. Eur J Org Chem 2001:3899–3901CrossRef
61.
Zurück zum Zitat Ngah WW, Teong L, Hanafiah M (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456CrossRef Ngah WW, Teong L, Hanafiah M (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456CrossRef
62.
Zurück zum Zitat Chiou M-S, Ho P-Y, Li H-Y (2004) Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes Pigments 60:69–84CrossRef Chiou M-S, Ho P-Y, Li H-Y (2004) Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes Pigments 60:69–84CrossRef
63.
Zurück zum Zitat Crini G, Badot P-M (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447CrossRef Crini G, Badot P-M (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447CrossRef
64.
Zurück zum Zitat Bhatnagar A, Sillanpää M (2009) Applications of chitin-and chitosan-derivatives for the detoxification of water and wastewater – a short review. Adv Colloid Interf Sci 152:26–38CrossRef Bhatnagar A, Sillanpää M (2009) Applications of chitin-and chitosan-derivatives for the detoxification of water and wastewater – a short review. Adv Colloid Interf Sci 152:26–38CrossRef
65.
Zurück zum Zitat Varma A, Deshpande S, Kennedy J (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93CrossRef Varma A, Deshpande S, Kennedy J (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93CrossRef
66.
Zurück zum Zitat Sankararamakrishnan N, Sharma AK, Sanghi R (2007) Novel chitosan derivative for the removal of cadmium in the presence of cyanide from electroplating wastewater. J Hazard Mater 148:353–359PubMedCrossRef Sankararamakrishnan N, Sharma AK, Sanghi R (2007) Novel chitosan derivative for the removal of cadmium in the presence of cyanide from electroplating wastewater. J Hazard Mater 148:353–359PubMedCrossRef
67.
Zurück zum Zitat Liu Z, Wang H, Liu C, Jiang Y, Yu G, Mu X, Wang X (2012) Magnetic cellulose–chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem Commun 48:7350–7352CrossRef Liu Z, Wang H, Liu C, Jiang Y, Yu G, Mu X, Wang X (2012) Magnetic cellulose–chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem Commun 48:7350–7352CrossRef
68.
Zurück zum Zitat Chatterjee S, Lee MW, Woo SH (2010) Adsorption of Congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol 101:1800–1806PubMedCrossRef Chatterjee S, Lee MW, Woo SH (2010) Adsorption of Congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol 101:1800–1806PubMedCrossRef
69.
Zurück zum Zitat Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials – a short review. Carbohydr Polym 82:227–232CrossRef Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials – a short review. Carbohydr Polym 82:227–232CrossRef
70.
Zurück zum Zitat Cho Y-W, Cho Y-N, Chung S-H, Yoo G, Ko S-W (1999) Water-soluble chitin as a wound healing accelerator. Biomaterials 20:2139–2145PubMedCrossRef Cho Y-W, Cho Y-N, Chung S-H, Yoo G, Ko S-W (1999) Water-soluble chitin as a wound healing accelerator. Biomaterials 20:2139–2145PubMedCrossRef
71.
Zurück zum Zitat Huang Y, Zhong Z, Duan B, Zhang L, Yang Z, Wang Y, Ye Q (2014) Novel fibers fabricated directly from chitin solution and their application as wound dressing. J Mater Chem B 2:3427–3432CrossRefPubMed Huang Y, Zhong Z, Duan B, Zhang L, Yang Z, Wang Y, Ye Q (2014) Novel fibers fabricated directly from chitin solution and their application as wound dressing. J Mater Chem B 2:3427–3432CrossRefPubMed
72.
Zurück zum Zitat Madhumathi K, Sudheesh Kumar PT, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV, Jayakumar R (2010) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med 21:807–813PubMedCrossRef Madhumathi K, Sudheesh Kumar PT, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV, Jayakumar R (2010) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med 21:807–813PubMedCrossRef
73.
Zurück zum Zitat Nagahama H, Nwe N, Jayakumar R, Koiwa S, Furuike T, Tamura H (2008) Novel biodegradable chitin membranes for tissue engineering applications. Carbohydr Polym 73:295–302CrossRef Nagahama H, Nwe N, Jayakumar R, Koiwa S, Furuike T, Tamura H (2008) Novel biodegradable chitin membranes for tissue engineering applications. Carbohydr Polym 73:295–302CrossRef
74.
Zurück zum Zitat Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Tamura H, Jayakumar R (2009) Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr Polym 77:863–869CrossRef Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Tamura H, Jayakumar R (2009) Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr Polym 77:863–869CrossRef
75.
Zurück zum Zitat Peter M, Binulal N, Nair S, Selvamurugan N, Tamura H, Jayakumar R (2010) Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 158:353–361CrossRef Peter M, Binulal N, Nair S, Selvamurugan N, Tamura H, Jayakumar R (2010) Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 158:353–361CrossRef
76.
Zurück zum Zitat He M, Wang X, Wang Z, Chen L, Lu Y, Zhang X, Li M, Liu Z, Zhang Y, Xia H (2017) Biocompatible and biodegradable bioplastics constructed from chitin via a “green” pathway for bone repair. ACS Sustain Chem Eng 5:9126–9135CrossRef He M, Wang X, Wang Z, Chen L, Lu Y, Zhang X, Li M, Liu Z, Zhang Y, Xia H (2017) Biocompatible and biodegradable bioplastics constructed from chitin via a “green” pathway for bone repair. ACS Sustain Chem Eng 5:9126–9135CrossRef
77.
Zurück zum Zitat Jayakumar R, Prabaharan M, Nair S, Tokura S, Tamura H, Selvamurugan N (2010) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog Mater Sci 55:675–709CrossRef Jayakumar R, Prabaharan M, Nair S, Tokura S, Tamura H, Selvamurugan N (2010) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog Mater Sci 55:675–709CrossRef
78.
Zurück zum Zitat Liu M, Chang Y, Yang J, You Y, He R, Chen T, Zhou C (2016) Functionalized halloysite nanotube by chitosan grafting for drug delivery of curcumin to achieve enhanced anticancer efficacy. J Mater Chem B 4:2253–2263CrossRefPubMed Liu M, Chang Y, Yang J, You Y, He R, Chen T, Zhou C (2016) Functionalized halloysite nanotube by chitosan grafting for drug delivery of curcumin to achieve enhanced anticancer efficacy. J Mater Chem B 4:2253–2263CrossRefPubMed
79.
Zurück zum Zitat Navard P (2012) The European Polysaccharide Network of Excellence (EPNOE): research initiatives and results. Springer Science & Business Media, Vienna Navard P (2012) The European Polysaccharide Network of Excellence (EPNOE): research initiatives and results. Springer Science & Business Media, Vienna
80.
Zurück zum Zitat Hirano S, Itakura C, Seino H, Akiyama Y, Nonaka I, Kanbara N, Kawakami T (1990) Chitosan as an ingredient for domestic animal feeds. J Agric Food Chem 38:1214–1217CrossRef Hirano S, Itakura C, Seino H, Akiyama Y, Nonaka I, Kanbara N, Kawakami T (1990) Chitosan as an ingredient for domestic animal feeds. J Agric Food Chem 38:1214–1217CrossRef
81.
Zurück zum Zitat Kaur S, Dhillon GS (2014) The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit Rev Microbiol 40:155–175PubMedCrossRef Kaur S, Dhillon GS (2014) The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit Rev Microbiol 40:155–175PubMedCrossRef
82.
Zurück zum Zitat Rocha MAM, Coimbra MA, Nunes C (2017) Applications of chitosan and their derivatives in beverages: a critical review. Curr Opin Food Sci 15:61–69CrossRef Rocha MAM, Coimbra MA, Nunes C (2017) Applications of chitosan and their derivatives in beverages: a critical review. Curr Opin Food Sci 15:61–69CrossRef
83.
Zurück zum Zitat Jin J, Lee D, Im HG, Han YC, Jeong EG, Rolandi M, Choi KC, Bae BS (2016) Chitin nanofiber transparent paper for flexible green electronics. Adv Mater 28:5169–5175PubMedCrossRef Jin J, Lee D, Im HG, Han YC, Jeong EG, Rolandi M, Choi KC, Bae BS (2016) Chitin nanofiber transparent paper for flexible green electronics. Adv Mater 28:5169–5175PubMedCrossRef
84.
Zurück zum Zitat Rosenberg G (2014) A new critical estimate of named species-level diversity of the recent Mollusca. Am Malacol Bull 32:308–322CrossRef Rosenberg G (2014) A new critical estimate of named species-level diversity of the recent Mollusca. Am Malacol Bull 32:308–322CrossRef
85.
Zurück zum Zitat Silva VM, Park KJ, Hubinger MD (2010) Optimization of the enzymatic hydrolysis of mussel meat. J Food Sci 75:36–42CrossRef Silva VM, Park KJ, Hubinger MD (2010) Optimization of the enzymatic hydrolysis of mussel meat. J Food Sci 75:36–42CrossRef
86.
Zurück zum Zitat Rezaei R, Mohadesi M, Moradi GR (2013) Optimization of biodiesel production using waste mussel shell catalyst. Fuel 109:534–541CrossRef Rezaei R, Mohadesi M, Moradi GR (2013) Optimization of biodiesel production using waste mussel shell catalyst. Fuel 109:534–541CrossRef
87.
Zurück zum Zitat Tekin K (2015) Hydrothermal conversion of Russian olive seeds into crude bio-oil using a CaO catalyst derived from waste mussel shells. Energy Fuel 29:4382–4392CrossRef Tekin K (2015) Hydrothermal conversion of Russian olive seeds into crude bio-oil using a CaO catalyst derived from waste mussel shells. Energy Fuel 29:4382–4392CrossRef
88.
Zurück zum Zitat Ballester P, Mármol I, Morales J, Sánchez L (2007) Use of limestone obtained from waste of the mussel cannery industry for the production of mortars. Cem Concr Res 37:559–564CrossRef Ballester P, Mármol I, Morales J, Sánchez L (2007) Use of limestone obtained from waste of the mussel cannery industry for the production of mortars. Cem Concr Res 37:559–564CrossRef
89.
Zurück zum Zitat Lertwattanaruk P, Makul N, Siripattarapravat C (2012) Utilization of ground waste seashells in cement mortars for masonry and plastering. J Environ Manag 111:133–141CrossRef Lertwattanaruk P, Makul N, Siripattarapravat C (2012) Utilization of ground waste seashells in cement mortars for masonry and plastering. J Environ Manag 111:133–141CrossRef
90.
Zurück zum Zitat Paz-Ferreiro J, Baez-Bernal D, Castro Insua J, Garcia Pomar MI (2012) Effects of mussel shell addition on the chemical and biological properties of a Cambisol. Chemosphere 86:1117–1121PubMedCrossRef Paz-Ferreiro J, Baez-Bernal D, Castro Insua J, Garcia Pomar MI (2012) Effects of mussel shell addition on the chemical and biological properties of a Cambisol. Chemosphere 86:1117–1121PubMedCrossRef
91.
Zurück zum Zitat Vega FA, Covelo EF, Andrade ML (2009) Effects of sewage sludge and barley straw treatment on the sorption and retention of Cu, Cd and Pb by coppermine Anthropic Regosols. J Hazard Mater 169:36–45PubMedCrossRef Vega FA, Covelo EF, Andrade ML (2009) Effects of sewage sludge and barley straw treatment on the sorption and retention of Cu, Cd and Pb by coppermine Anthropic Regosols. J Hazard Mater 169:36–45PubMedCrossRef
92.
Zurück zum Zitat Abeynaike A, Wang L, Jones MI, Patterson DA (2011) Pyrolysed powdered mussel shells for eutrophication control: effect of particle size and powder concentration on the mechanism and extent of phosphate removal. Asia Pac J Chem Eng 6:231–243CrossRef Abeynaike A, Wang L, Jones MI, Patterson DA (2011) Pyrolysed powdered mussel shells for eutrophication control: effect of particle size and powder concentration on the mechanism and extent of phosphate removal. Asia Pac J Chem Eng 6:231–243CrossRef
93.
Zurück zum Zitat Lee C, Kwon H, Jeon H, Koopman B (2009) A new recycling material for removing phosphorus from water. J Clean Prod 17:683–687CrossRef Lee C, Kwon H, Jeon H, Koopman B (2009) A new recycling material for removing phosphorus from water. J Clean Prod 17:683–687CrossRef
94.
Zurück zum Zitat Song Y, Weidler PG, Berg U, Nüesch R, Donnert D (2006) Calcite-seeded crystallization of calcium phosphate for phosphorus recovery. Chemosphere 63:236–243PubMedCrossRef Song Y, Weidler PG, Berg U, Nüesch R, Donnert D (2006) Calcite-seeded crystallization of calcium phosphate for phosphorus recovery. Chemosphere 63:236–243PubMedCrossRef
95.
Zurück zum Zitat Hinedi Z, Goldberg S, Chang A, Yesinowski J (1992) A 31P and 1H MAS NMR study of phosphate sorption onto calcium carbonate. J Colloid Interface Sci 152:141–160CrossRef Hinedi Z, Goldberg S, Chang A, Yesinowski J (1992) A 31P and 1H MAS NMR study of phosphate sorption onto calcium carbonate. J Colloid Interface Sci 152:141–160CrossRef
Metadaten
Titel
Transformation of Seafood Wastes into Chemicals and Materials
verfasst von
Huiying Yang
Ning Yan
Copyright-Jahr
2019
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-9060-3_1012