Skip to main content

2017 | OriginalPaper | Buchkapitel

Transparent Carbon Nanotubes (CNTs) as Antireflection and Self-cleaning Solar Cell Coating

verfasst von : Morteza Khalaji Assadi, Hengameh Hanaei

Erschienen in: Engineering Applications of Nanotechnology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon nanotubes have fascinating chemical and physical properties as indicated by graphite and diamond characteristics, and the reason is their individual atomic structure. They have acquired critical achievements in various fields such as materials, electronic devices, energy storage, separation, and sensors. Recently, antireflective coatings with self-cleaning properties attract critical consideration for their theoretical characteristics and their wide-ranging applications. In this chapter, the benefits of using CNTs as an antireflection and self-cleaning thin coating layer have been discussed to improve mechanical and electrical behavior of solar cells. Transfer-matrix method (TMM) and finite-difference time-domain (FDTD) method were studied as most suitable technique for thin films.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Angmo, D., Hösel, M., & Krebs, F. C. (2012). All solution processing of ITO free organic solar cell modules directly on barrier foil. Solar Energy Materials and Solar Cells, 107, 329–336.CrossRef Angmo, D., Hösel, M., & Krebs, F. C. (2012). All solution processing of ITO free organic solar cell modules directly on barrier foil. Solar Energy Materials and Solar Cells, 107, 329–336.CrossRef
Zurück zum Zitat Avouris, P. (2002). Carbon nanotube electronics. Chemical Physics Letters, 281, 429–445. Avouris, P. (2002). Carbon nanotube electronics. Chemical Physics Letters, 281, 429–445.
Zurück zum Zitat Chee Howe See, A. T. H. (2007). A Review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Industrial and Engineering Chemistry Research, 46(4). Chee Howe See, A. T. H. (2007). A Review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Industrial and Engineering Chemistry Research, 46(4).
Zurück zum Zitat Chee Howe See, O. M. D., MacKenzie, Kieran J., & Harris, Andrew T. (2008). Process parameter interaction effects during carbon nanotube synthesis in fluidized beds. Industrial and Engineering Chemistry, 47, 7686–7692.CrossRef Chee Howe See, O. M. D., MacKenzie, Kieran J., & Harris, Andrew T. (2008). Process parameter interaction effects during carbon nanotube synthesis in fluidized beds. Industrial and Engineering Chemistry, 47, 7686–7692.CrossRef
Zurück zum Zitat Cui, K., Anisimov, A. S., Chiba, T., Fujii, S., Kataura, H., Nasibulin, A. G., et al. (2014). Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films. Journal of Materials Chemistry A, 2(29), 11311–11318. doi:10.1039/c4ta01353k CrossRef Cui, K., Anisimov, A. S., Chiba, T., Fujii, S., Kataura, H., Nasibulin, A. G., et al. (2014). Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films. Journal of Materials Chemistry A, 2(29), 11311–11318. doi:10.​1039/​c4ta01353k CrossRef
Zurück zum Zitat Danafar, F., Fakhru’l-Razi, A., Mohd Salleh, M. A., & Awang Biak, D. R. (2011). Influence of catalytic particle size on the performance of fluidized-bed chemical vapor deposition synthesis of carbon nanotubes. Chemical Engineering Research and Design, 89(2), 214–223. doi:10.1016/j.cherd.2010.05.004 CrossRef Danafar, F., Fakhru’l-Razi, A., Mohd Salleh, M. A., & Awang Biak, D. R. (2011). Influence of catalytic particle size on the performance of fluidized-bed chemical vapor deposition synthesis of carbon nanotubes. Chemical Engineering Research and Design, 89(2), 214–223. doi:10.​1016/​j.​cherd.​2010.​05.​004 CrossRef
Zurück zum Zitat Danafar, F., Fakhru’l-Razi, A., Salleh, M. A. M., & Biak, D. R. A. (2009). Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes—A review. Chemical Engineering Journal, 155(1–2), 37–48. doi:10.1016/j.cej.2009.07.052 CrossRef Danafar, F., Fakhru’l-Razi, A., Salleh, M. A. M., & Biak, D. R. A. (2009). Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes—A review. Chemical Engineering Journal, 155(1–2), 37–48. doi:10.​1016/​j.​cej.​2009.​07.​052 CrossRef
Zurück zum Zitat Deinega, A., Belousov, S., Valuev, I. (2013) Transfer-matrix approach for finite-difference time-domain simulation of periodic structures. Physical Review E, 88(5). doi:10.1103/PhysRevE.88.053305 Deinega, A., Belousov, S., Valuev, I. (2013) Transfer-matrix approach for finite-difference time-domain simulation of periodic structures. Physical Review E, 88(5). doi:10.​1103/​PhysRevE.​88.​053305
Zurück zum Zitat Dincer, I. (2000). Renewable energy and sustainable development: A crucial review. Renewable and Sustainable Energy Reviews, 4, 157–175.CrossRef Dincer, I. (2000). Renewable energy and sustainable development: A crucial review. Renewable and Sustainable Energy Reviews, 4, 157–175.CrossRef
Zurück zum Zitat Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G., et al. (2006). Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicological Sciences, 92(1), 5–22. doi:10.1093/toxsci/kfj130 CrossRef Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G., et al. (2006). Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicological Sciences, 92(1), 5–22. doi:10.​1093/​toxsci/​kfj130 CrossRef
Zurück zum Zitat Duche, D., Torchio, P., Escoubas, L., Monestier, F., Simon, J.-J., Flory, F., et al. (2009). Improving light absorption in organic solar cells by plasmonic contribution. Solar Energy Materials and Solar Cells, 93(8), 1377–1382. doi:10.1016/j.solmat.2009.02.028 CrossRef Duche, D., Torchio, P., Escoubas, L., Monestier, F., Simon, J.-J., Flory, F., et al. (2009). Improving light absorption in organic solar cells by plasmonic contribution. Solar Energy Materials and Solar Cells, 93(8), 1377–1382. doi:10.​1016/​j.​solmat.​2009.​02.​028 CrossRef
Zurück zum Zitat Faustini, M., Nicole, L., Boissière, Cd, Innocenzi, P., Cm, Sanchez, & Grosso, D. (2010). Hydrophobic, antireflective, self-cleaning, and antifogging sol–gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells. Chemistry of Materials, 22(15), 4406–4413. doi:10.1021/cm100937e CrossRef Faustini, M., Nicole, L., Boissière, Cd, Innocenzi, P., Cm, Sanchez, & Grosso, D. (2010). Hydrophobic, antireflective, self-cleaning, and antifogging sol–gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells. Chemistry of Materials, 22(15), 4406–4413. doi:10.​1021/​cm100937e CrossRef
Zurück zum Zitat Gizem Toroğlu LS (2014) Finite-Difference Time-Domain (FDTD) MATLAB Codes for First- and Second-Order EM Differential Equations. IEEE Antennas and Propagation Magazine, 56 (2). Gizem Toroğlu LS (2014) Finite-Difference Time-Domain (FDTD) MATLAB Codes for First- and Second-Order EM Differential Equations. IEEE Antennas and Propagation Magazine, 56 (2).
Zurück zum Zitat González-Ramírez, J. E., Fuentes, J., Hernández, L. C., & Hernández, L. (2009). Evaluation of the thickness in nanolayers using the transfer matrix method for modeling the spectral reflectivity. Physics Research International González-Ramírez, J. E., Fuentes, J., Hernández, L. C., & Hernández, L. (2009). Evaluation of the thickness in nanolayers using the transfer matrix method for modeling the spectral reflectivity. Physics Research International
Zurück zum Zitat Hengameh Hanaei, F. R. B. A., Mohammadpour, E., & Kakooei, S. (2013). Optimization of carbon nano tubes synthesis using fluidized bed chemical vapor deposition: A statistical approach. Caspian Journal of Applied Sciences, 2(3), 46–55. Hengameh Hanaei, F. R. B. A., Mohammadpour, E., & Kakooei, S. (2013). Optimization of carbon nano tubes synthesis using fluidized bed chemical vapor deposition: A statistical approach. Caspian Journal of Applied Sciences, 2(3), 46–55.
Zurück zum Zitat Hyo Jin Gwon, Y. P., Moon, Cheon Woo, Nahm, Sahn, Yoon, Seok-Jin, Kim, Soo Young, & Jang, Ho Won. (2014). Superhydrophobic and antireflective nanograss-coated glass for high performance solar cells. Nano Research, 7(5), 670–678. doi:10.1007/s12274-014-0427-x CrossRef Hyo Jin Gwon, Y. P., Moon, Cheon Woo, Nahm, Sahn, Yoon, Seok-Jin, Kim, Soo Young, & Jang, Ho Won. (2014). Superhydrophobic and antireflective nanograss-coated glass for high performance solar cells. Nano Research, 7(5), 670–678. doi:10.​1007/​s12274-014-0427-x CrossRef
Zurück zum Zitat Jung, S., Kim, K.-Y., Lee, Y.-I., Youn, J.-H., Moon, H.-T., Jang, J., et al. (2011). Optical modeling and analysis of organic solar cells with coherent multilayers and Incoherent glass substrate using generalized transfer matrix method. Japanese Journal of Applied Physics, 50(12R), 122301.CrossRef Jung, S., Kim, K.-Y., Lee, Y.-I., Youn, J.-H., Moon, H.-T., Jang, J., et al. (2011). Optical modeling and analysis of organic solar cells with coherent multilayers and Incoherent glass substrate using generalized transfer matrix method. Japanese Journal of Applied Physics, 50(12R), 122301.CrossRef
Zurück zum Zitat Kamat, P. (2006). Carbon nanomaterials: Building blocks in energy conversion devices. The Electrochemical Society Interface Kamat, P. (2006). Carbon nanomaterials: Building blocks in energy conversion devices. The Electrochemical Society Interface
Zurück zum Zitat Katsidis, C. C., & Siapkas, D. I. (2002). General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Applied Optics, 41(19), 3978–3987.CrossRef Katsidis, C. C., & Siapkas, D. I. (2002). General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Applied Optics, 41(19), 3978–3987.CrossRef
Zurück zum Zitat Kosarian, A., & Jelodarian, P. (2011). Numerical evaluation and characterization of single junction solar cell based on thin-film a-Si: H/a-SiGe: H hetero-structure. In: Electrical Engineering (ICEE), 2011 19th Iranian Conference on, 2011. IEEE, pp 1–6. Kosarian, A., & Jelodarian, P. (2011). Numerical evaluation and characterization of single junction solar cell based on thin-film a-Si: H/a-SiGe: H hetero-structure. In: Electrical Engineering (ICEE), 2011 19th Iranian Conference on, 2011. IEEE, pp 1–6.
Zurück zum Zitat Lesina, A. C., Paternoster, G., Mattedi, F., Ferrario, L., Berini, P., Ramunno, L., et al. (2015a). Modeling and characterization of antireflection coatings with embedded silver nanoparticles for silicon solar cells. Plasmonics,. doi:10.1007/s11468-015-9957-7 Lesina, A. C., Paternoster, G., Mattedi, F., Ferrario, L., Berini, P., Ramunno, L., et al. (2015a). Modeling and characterization of antireflection coatings with embedded silver nanoparticles for silicon solar cells. Plasmonics,. doi:10.​1007/​s11468-015-9957-7
Zurück zum Zitat Lesina, A. C., Vaccari, A., Berini, P., & Ramunno, L. (2015b). On the convergence and accuracy of the FDTD method for nanoplasmonics. Optics Express, 23(8), 10481–10497. doi:10.1364/OE.23.010481 CrossRef Lesina, A. C., Vaccari, A., Berini, P., & Ramunno, L. (2015b). On the convergence and accuracy of the FDTD method for nanoplasmonics. Optics Express, 23(8), 10481–10497. doi:10.​1364/​OE.​23.​010481 CrossRef
Zurück zum Zitat Li, L., Li, Y., Gao, S., & Koshizaki, N. (2009). Ordered Co3O4 hierarchical nanorod arrays: Tunable superhydrophilicity without UV irradiation and transition to superhydrophobicity. Journal of Materials Chemistry, 19(44), 8366. doi:10.1039/b914462e CrossRef Li, L., Li, Y., Gao, S., & Koshizaki, N. (2009). Ordered Co3O4 hierarchical nanorod arrays: Tunable superhydrophilicity without UV irradiation and transition to superhydrophobicity. Journal of Materials Chemistry, 19(44), 8366. doi:10.​1039/​b914462e CrossRef
Zurück zum Zitat Li, Y. Z. J., & Yang, B. (2010). Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today, 5, 117–127.CrossRef Li, Y. Z. J., & Yang, B. (2010). Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today, 5, 117–127.CrossRef
Zurück zum Zitat Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B. F., Ashari-Astani, N., et al. (2014). Dye-sensitized solar cells with 13 % efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 6(3), 242–247. doi:10.1038/nchem.1861 CrossRef Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B. F., Ashari-Astani, N., et al. (2014). Dye-sensitized solar cells with 13 % efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 6(3), 242–247. doi:10.​1038/​nchem.​1861 CrossRef
Zurück zum Zitat Philip, G., & Collins, P. A. (2000). Nanotubes FOR electronics. Scientific American, Inc. Philip, G., & Collins, P. A. (2000). Nanotubes FOR electronics. Scientific American, Inc.
Zurück zum Zitat Ralph Seitz, B. P. M., Axel, T., Andreas, S., Michael, M., Mickael P., Oliver, K., et al. (2012). Nanotechnology in the sectors of solar energy and energy storage. Ralph Seitz, B. P. M., Axel, T., Andreas, S., Michael, M., Mickael P., Oliver, K., et al. (2012). Nanotechnology in the sectors of solar energy and energy storage.
Zurück zum Zitat Raut, H. K., Ganesh, V. A., Nair, A. S., & Ramakrishna, S. (2011). Anti-reflective coatings: A critical, in-depth review. Energy and Environmental Science, 4(10), 3779. doi:10.1039/c1ee01297e CrossRef Raut, H. K., Ganesh, V. A., Nair, A. S., & Ramakrishna, S. (2011). Anti-reflective coatings: A critical, in-depth review. Energy and Environmental Science, 4(10), 3779. doi:10.​1039/​c1ee01297e CrossRef
Zurück zum Zitat Sahouane, N., & Zerga, A. (2014). Optimization of antireflection multilayer for industrial crystalline silicon solar cells. Energy Procedia, 44, 118–125.CrossRef Sahouane, N., & Zerga, A. (2014). Optimization of antireflection multilayer for industrial crystalline silicon solar cells. Energy Procedia, 44, 118–125.CrossRef
Zurück zum Zitat Saravanan, S., Dubey, R. S., & Kalainathan, S. (2015). Design and analysis of thin film based silicon solar cells for efficient light trapping. Advances in Optical Science and Engineering, 166, 129–134. doi:10.1007/978-81-322-2367-2_17 CrossRef Saravanan, S., Dubey, R. S., & Kalainathan, S. (2015). Design and analysis of thin film based silicon solar cells for efficient light trapping. Advances in Optical Science and Engineering, 166, 129–134. doi:10.​1007/​978-81-322-2367-2_​17 CrossRef
Zurück zum Zitat Seung Yong Son, Y. L., Won, Sungho, & Lee, Dong Hyun. (2008). High-quality multiwalled carbon nanotubes from catalytic decomposition of carboneous materials in gas-solid fluidized beds. Industrial and Engineering Chemistry, 47, 2166–2175.CrossRef Seung Yong Son, Y. L., Won, Sungho, & Lee, Dong Hyun. (2008). High-quality multiwalled carbon nanotubes from catalytic decomposition of carboneous materials in gas-solid fluidized beds. Industrial and Engineering Chemistry, 47, 2166–2175.CrossRef
Zurück zum Zitat Shi, E., Zhang, L., Li, Z., Li, P., Shang, Y., Jia, Y., et al. (2012). TiO(2)-coated carbon nanotube-silicon solar cells with efficiency of 15 %. Scientific reports, 2, 884. doi:10.1038/srep00884 Shi, E., Zhang, L., Li, Z., Li, P., Shang, Y., Jia, Y., et al. (2012). TiO(2)-coated carbon nanotube-silicon solar cells with efficiency of 15 %. Scientific reports, 2, 884. doi:10.​1038/​srep00884
Zurück zum Zitat Sun, T. F. L., Gao, X., & Jiang, L. (2005). Bioinspired surfaces with special wettability. Accounts of Chemical Research, 38, 644–652.CrossRef Sun, T. F. L., Gao, X., & Jiang, L. (2005). Bioinspired surfaces with special wettability. Accounts of Chemical Research, 38, 644–652.CrossRef
Zurück zum Zitat The Finite-Difference Time-Domain Method (FDTD). (2012). The Finite-Difference Time-Domain Method (FDTD). (2012).
Zurück zum Zitat Vaccari, A., Lesina, A. C., Cristoforetti, L., Chiappini, A., Crema, L., Calliari, L., et al. (2014). Light-opals interaction modeling by direct numerical solution of Maxwell’s equations. Optics Express, 22(22), 27739–27749. doi:10.1364/OE.22.027739 CrossRef Vaccari, A., Lesina, A. C., Cristoforetti, L., Chiappini, A., Crema, L., Calliari, L., et al. (2014). Light-opals interaction modeling by direct numerical solution of Maxwell’s equations. Optics Express, 22(22), 27739–27749. doi:10.​1364/​OE.​22.​027739 CrossRef
Zurück zum Zitat Wan, D., Chen, H.-L., Tseng, T.-C., Fang, C.-Y., Lai, Y.-S., & Yeh, F.-Y. (2010). Antireflective nanoparticle arrays enhance the efficiency of silicon solar cells. Advanced Functional Materials, 20(18), 3064–3075. doi:10.1002/adfm.201000678 CrossRef Wan, D., Chen, H.-L., Tseng, T.-C., Fang, C.-Y., Lai, Y.-S., & Yeh, F.-Y. (2010). Antireflective nanoparticle arrays enhance the efficiency of silicon solar cells. Advanced Functional Materials, 20(18), 3064–3075. doi:10.​1002/​adfm.​201000678 CrossRef
Zurück zum Zitat Wei, F., Zhang, Q., Qian, W.-Z., Yu, H., Wang, Y., Luo, G.-H., et al. (2008). The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: A multiscale space–time analysis. Powder Technology, 183(1), 10–20. doi:10.1016/j.powtec.2007.11.025 CrossRef Wei, F., Zhang, Q., Qian, W.-Z., Yu, H., Wang, Y., Luo, G.-H., et al. (2008). The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: A multiscale space–time analysis. Powder Technology, 183(1), 10–20. doi:10.​1016/​j.​powtec.​2007.​11.​025 CrossRef
Zurück zum Zitat Xiong, J., Das, S. N., Shin, B., Kar, J. P., Choi, J. H., & Myoung, J. M. (2010). Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties. Journal of Colloid and Interface Science, 350(1), 344–347. doi:10.1016/j.jcis.2010.06.053 CrossRef Xiong, J., Das, S. N., Shin, B., Kar, J. P., Choi, J. H., & Myoung, J. M. (2010). Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties. Journal of Colloid and Interface Science, 350(1), 344–347. doi:10.​1016/​j.​jcis.​2010.​06.​053 CrossRef
Zurück zum Zitat Yang, Z., Zhu, D., Zhao, M., & Cao, M. (2004). The study of a nano-porous optical film with the finite difference time domain method. Journal of Optics A: Pure and Applied Optics, 6(6), 564.CrossRef Yang, Z., Zhu, D., Zhao, M., & Cao, M. (2004). The study of a nano-porous optical film with the finite difference time domain method. Journal of Optics A: Pure and Applied Optics, 6(6), 564.CrossRef
Zurück zum Zitat Ye, L., Zhang, Y., Zhang, X., Hu, T., Ji, R., Ding, B., et al. (2013). Sol–gel preparation of SiO2/TiO2/SiO2–TiO2 broadband antireflective coating for solar cell cover glass. Solar Energy Materials and Solar Cells, 111, 160–164. doi:10.1016/j.solmat.2012.12.037 CrossRef Ye, L., Zhang, Y., Zhang, X., Hu, T., Ji, R., Ding, B., et al. (2013). Sol–gel preparation of SiO2/TiO2/SiO2–TiO2 broadband antireflective coating for solar cell cover glass. Solar Energy Materials and Solar Cells, 111, 160–164. doi:10.​1016/​j.​solmat.​2012.​12.​037 CrossRef
Zurück zum Zitat Yongjin Wang, F. H., Kanamori, Y., Wu, T., & Hane, K. (2010) Large area, freestanding GaN nanocolumn membrane with bottom subwavelength nanostructure. Optic Express, 18(6). Yongjin Wang, F. H., Kanamori, Y., Wu, T., & Hane, K. (2010) Large area, freestanding GaN nanocolumn membrane with bottom subwavelength nanostructure. Optic Express, 18(6).
Zurück zum Zitat Zhan, F., Li, Z., Shen, X., He, H., & Zeng, J. (2014) Design multilayer antireflection coatings for terrestrial solar cells. The Scientific World Journal Zhan, F., Li, Z., Shen, X., He, H., & Zeng, J. (2014) Design multilayer antireflection coatings for terrestrial solar cells. The Scientific World Journal
Zurück zum Zitat Zhu, W., Feng, X., Feng, L., & Jiang, L. (2006). UV-manipulated wettability between superhydrophobicity and superhydrophilicity on a transparent and conductive SnO2 nanorod film. Chemical Communications, 26, 2753. doi:10.1039/b603634a CrossRef Zhu, W., Feng, X., Feng, L., & Jiang, L. (2006). UV-manipulated wettability between superhydrophobicity and superhydrophilicity on a transparent and conductive SnO2 nanorod film. Chemical Communications, 26, 2753. doi:10.​1039/​b603634a CrossRef
Zurück zum Zitat Zou C. S., & Ta, M. (2014). Investigation of moth-eye antireflection coatings for photovoltaic cover glass using FDTD modeling method. IEEE, 1(4). Zou C. S., & Ta, M. (2014). Investigation of moth-eye antireflection coatings for photovoltaic cover glass using FDTD modeling method. IEEE, 1(4).
Metadaten
Titel
Transparent Carbon Nanotubes (CNTs) as Antireflection and Self-cleaning Solar Cell Coating
verfasst von
Morteza Khalaji Assadi
Hengameh Hanaei
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-29761-3_4

Neuer Inhalt