Skip to main content

2017 | OriginalPaper | Buchkapitel

8. Transport in Liquid-Phase Electrochemical Devices

verfasst von : Richard O. Stroman, Greg Jackson

Erschienen in: Springer Handbook of Electrochemical Energy

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Transport of reactants and products in liquid-fed electrochemical cells is critical in terms of reactant utilization, concentration polarizations, and coulombic efficiencies. Design of electrochemical flow cells can benefit from adequately detailed models that capture the locally variable impact of reactant depletion and product build-up on electrochemical reactions throughout the cell. This chapter illustrates the importance of transport modeling by presenting a finite-volume, two-dimensional (2-D) model of a liquid-phase electrochemical cell with simple cell geometry, but complex multistep chemistry at each electrode incorporating parasitic reactions and/or mixed potentials. The modeled cell involves two half-cell reactions, borohydride (\(\mathrm{BH_{4}^{-}}\)) oxidation and hydrogen peroxide (H2O2) reduction, in planar flow channels with electrodes separated by flowing liquid-phase electrolytes and an ion-exchange membrane. This generic cell topology is representative of many fuel cells and flow batteries. The finite-volume model solves for conservation of mass, momentum, species, and charge in both the cathode and anode flow channels for ideal, dilute, and concentrated electrolytes. The model couples the flows to complex boundary conditions at the electrochemically active electrode surfaces and the selective ion-exchange membrane. Model results show that the balance of advection, diffusion, and migration in the liquid electrolytes results in complex profiles that predict boundary layer build-up and significant advection perpendicular to the flow path. The direct borohydride-hydrogen peroxide fuel cell transport model, used to illustrate these concepts, shows how liquid-phase transport limits conversion and dictates cell voltages within the context of the competing reactions at the two electrodes. The chapter ends by demonstrating how such a model can be implemented in design studies to explore strategies for improving practical cell performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat I.B. Sprague, P. Dutta: Modeling of diffuse charge effects in a microfluidic based laminar flow fuel cell, Numer. Heat Transf. Part A 59(1), 1–27 (2011)CrossRef I.B. Sprague, P. Dutta: Modeling of diffuse charge effects in a microfluidic based laminar flow fuel cell, Numer. Heat Transf. Part A 59(1), 1–27 (2011)CrossRef
[2]
Zurück zum Zitat J. Ge, H. Liu: A three-dimensional mathematical model for liquid-fed direct methanol fuel cells, J. Power Sources 160(1), 413–421 (2006)MathSciNetCrossRef J. Ge, H. Liu: A three-dimensional mathematical model for liquid-fed direct methanol fuel cells, J. Power Sources 160(1), 413–421 (2006)MathSciNetCrossRef
[3]
Zurück zum Zitat Z.H. Wang, C.Y. Wang: Mathematical modeling of liquid-feed direct methanol fuel cells, J. Electrochem. Soc. 150(4), A508–A519 (2003)CrossRef Z.H. Wang, C.Y. Wang: Mathematical modeling of liquid-feed direct methanol fuel cells, J. Electrochem. Soc. 150(4), A508–A519 (2003)CrossRef
[4]
Zurück zum Zitat J.Q. Zou, Y. He, Z. Miao, X. Li: Non-isothermal modeling of direct methanol fuel cell, Int. J. Hydrogen Energy 35(13), 7206–7216 (2010)CrossRef J.Q. Zou, Y. He, Z. Miao, X. Li: Non-isothermal modeling of direct methanol fuel cell, Int. J. Hydrogen Energy 35(13), 7206–7216 (2010)CrossRef
[5]
Zurück zum Zitat V.A. Danilov, J. Lim, I.L. Moon, H. Chang: Three-dimensional, two-phase, CFD model for the design of a direct methanol fuel cell, J. Power Sources 162(2), 992–1002 (2006)CrossRef V.A. Danilov, J. Lim, I.L. Moon, H. Chang: Three-dimensional, two-phase, CFD model for the design of a direct methanol fuel cell, J. Power Sources 162(2), 992–1002 (2006)CrossRef
[6]
Zurück zum Zitat R.O. Stroman, G.S. Jackson: Modeling the performance of an ideal NaBH4-H2O2 direct borohydride fuel cell, J. Power Sources 247, 756–769 (2014)CrossRef R.O. Stroman, G.S. Jackson: Modeling the performance of an ideal NaBH4-H2O2 direct borohydride fuel cell, J. Power Sources 247, 756–769 (2014)CrossRef
[7]
Zurück zum Zitat R.O. Stroman, G.S. Jacksonc, Y. Garsanyd, K. Swider-Lyonsa: A calibrated hydrogen-peroxide direct-borohydride fuel cell model, J. Power Sources 271, 421–430 (2014)CrossRef R.O. Stroman, G.S. Jacksonc, Y. Garsanyd, K. Swider-Lyonsa: A calibrated hydrogen-peroxide direct-borohydride fuel cell model, J. Power Sources 271, 421–430 (2014)CrossRef
[8]
Zurück zum Zitat J. Christensen, D. Cook, P. Albertus: An efficient parallelizable 3D thermoelectrochemical model of a Li-ion cell, J. Electrochem. Soc. 160(11), A2258–A2267 (2013)CrossRef J. Christensen, D. Cook, P. Albertus: An efficient parallelizable 3D thermoelectrochemical model of a Li-ion cell, J. Electrochem. Soc. 160(11), A2258–A2267 (2013)CrossRef
[9]
Zurück zum Zitat G. Qiu, A.S. Joshi, C.R. Dennison, K.W. Knehr, E.C. Kumbur, Y. Sun: 3-D pore-scale resolved model for coupled species/charge/fluid transport in a vanadium redox flow battery, Electrochim. Acta 64, 46–64 (2012)CrossRef G. Qiu, A.S. Joshi, C.R. Dennison, K.W. Knehr, E.C. Kumbur, Y. Sun: 3-D pore-scale resolved model for coupled species/charge/fluid transport in a vanadium redox flow battery, Electrochim. Acta 64, 46–64 (2012)CrossRef
[10]
Zurück zum Zitat J.S. Newman, K.E. Thomas-Alyea: Electrochemical Systems, 3rd edn. (Wiley, Hoboken 2004) p. 647 J.S. Newman, K.E. Thomas-Alyea: Electrochemical Systems, 3rd edn. (Wiley, Hoboken 2004) p. 647
[11]
Zurück zum Zitat I. Sprague, P. Dutta: Role of the diffuse layer in acidic and alkaline fuel cells, Electrochim. Acta 56(12), 4518–4525 (2011)CrossRef I. Sprague, P. Dutta: Role of the diffuse layer in acidic and alkaline fuel cells, Electrochim. Acta 56(12), 4518–4525 (2011)CrossRef
[12]
Zurück zum Zitat J. Liu, C.W. Monroe: Solute-volume effects in electrolyte transport, Electrochim. Acta 135, 447–460 (2014)CrossRef J. Liu, C.W. Monroe: Solute-volume effects in electrolyte transport, Electrochim. Acta 135, 447–460 (2014)CrossRef
[13]
Zurück zum Zitat R.B. Bird, W.E. Stewart, E.N. Lightfoot: Transport Phenomena, 2nd edn. (Wiley, New York 2002) R.B. Bird, W.E. Stewart, E.N. Lightfoot: Transport Phenomena, 2nd edn. (Wiley, New York 2002)
[14]
Zurück zum Zitat G. Ottonello: Principles of Geochemistry (Columbia Univ. Press, New York 1997) G. Ottonello: Principles of Geochemistry (Columbia Univ. Press, New York 1997)
[15]
Zurück zum Zitat K.S. Pitzer, G. Mayorga: Thermodynamics of electrolytes II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent, J. Phys. Chem. 77(19), 2300–2308 (1973)CrossRef K.S. Pitzer, G. Mayorga: Thermodynamics of electrolytes II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent, J. Phys. Chem. 77(19), 2300–2308 (1973)CrossRef
[16]
Zurück zum Zitat S. Whitaker: Diffusion and dispersion in porous media, Am. Inst. Chem. Eng. J. 13(3), 420–427 (1967)CrossRef S. Whitaker: Diffusion and dispersion in porous media, Am. Inst. Chem. Eng. J. 13(3), 420–427 (1967)CrossRef
[17]
Zurück zum Zitat H. Wu, P. Berg, X. Li: Non-isothermal transient modeling of water transport in PEM fuel cells, J. Power Sources 165, 232–243 (2007)CrossRef H. Wu, P. Berg, X. Li: Non-isothermal transient modeling of water transport in PEM fuel cells, J. Power Sources 165, 232–243 (2007)CrossRef
[18]
Zurück zum Zitat D.H. Schwarz, N. Djilali: 3D modeling of catalyst layers in PEM fuel cells: Effects of transport limitations, J. Electrochem. Soc. 154(11), B1167–B1178 (2007)CrossRef D.H. Schwarz, N. Djilali: 3D modeling of catalyst layers in PEM fuel cells: Effects of transport limitations, J. Electrochem. Soc. 154(11), B1167–B1178 (2007)CrossRef
[19]
Zurück zum Zitat E.S. Oran, J.P. Boris: Numerical Simulation of Reactive Flow, 2nd edn. (Cambridge Univ. Press, Cambridge 2001)MATH E.S. Oran, J.P. Boris: Numerical Simulation of Reactive Flow, 2nd edn. (Cambridge Univ. Press, Cambridge 2001)MATH
[20]
Zurück zum Zitat J. Ma, N.A. Choudhury, Y. Sahai: A comprehensive review of direct borohydride fuel cells, Renew. Sustain. Energy Rev. 14(1), 183–199 (2010)CrossRef J. Ma, N.A. Choudhury, Y. Sahai: A comprehensive review of direct borohydride fuel cells, Renew. Sustain. Energy Rev. 14(1), 183–199 (2010)CrossRef
[21]
Zurück zum Zitat U.B. Demirci: Direct borohydride fuel cell: Main issues met by the membrane-electrodes-assembly and potential solutions, J. Power Sources 172(2), 676–687 (2007)CrossRef U.B. Demirci: Direct borohydride fuel cell: Main issues met by the membrane-electrodes-assembly and potential solutions, J. Power Sources 172(2), 676–687 (2007)CrossRef
[22]
Zurück zum Zitat R. Retnamma, A.Q. Novais, C.M. Rangel: Kinetics of hydrolysis of sodium borohydride for hydrogen production in fuel cell applications: A review, Int. J. Hydrogen Energy 36(16), 9772–9790 (2011)CrossRef R. Retnamma, A.Q. Novais, C.M. Rangel: Kinetics of hydrolysis of sodium borohydride for hydrogen production in fuel cell applications: A review, Int. J. Hydrogen Energy 36(16), 9772–9790 (2011)CrossRef
[23]
Zurück zum Zitat D.M.F. Santos, C.A.C. Sequeira: Sodium borohydride as a fuel for the future, Renew. Sustain. Energy Rev. 15(8), 3980–4001 (2011)CrossRef D.M.F. Santos, C.A.C. Sequeira: Sodium borohydride as a fuel for the future, Renew. Sustain. Energy Rev. 15(8), 3980–4001 (2011)CrossRef
[24]
Zurück zum Zitat B.H. Liu, Z.P. Li: Current status and progress of direct borohydride fuel cell technology development, J. Power Sources 187(2), 291–297 (2009)CrossRef B.H. Liu, Z.P. Li: Current status and progress of direct borohydride fuel cell technology development, J. Power Sources 187(2), 291–297 (2009)CrossRef
[25]
Zurück zum Zitat C.P. de Leon, F.C. Walsh, D. Pletcher, D.J. Browning, J.B. Lakeman: Direct borohydride fuel cells, J. Power Sources 155(2), 172–181 (2006)CrossRef C.P. de Leon, F.C. Walsh, D. Pletcher, D.J. Browning, J.B. Lakeman: Direct borohydride fuel cells, J. Power Sources 155(2), 172–181 (2006)CrossRef
[26]
Zurück zum Zitat I. Merino-Jimenez, C. Ponce de León, A.A. Shah, F.C. Walsh: Developments in direct borohydride fuel cells and remaining challenges, J. Power Sources 219, 339–357 (2012)CrossRef I. Merino-Jimenez, C. Ponce de León, A.A. Shah, F.C. Walsh: Developments in direct borohydride fuel cells and remaining challenges, J. Power Sources 219, 339–357 (2012)CrossRef
[27]
Zurück zum Zitat G.H. Miley, N. Luo, J. Mather, R. Burton, G. Hawkins, L. Gu, E. Byrd, R. Gimlin, P.J. Shrestha, G. Benavides, J. Laystrom, D. Carroll: Direct NaBH4/H2O2 fuel cells, J. Power Sources 165(2), 509–516 (2007)CrossRef G.H. Miley, N. Luo, J. Mather, R. Burton, G. Hawkins, L. Gu, E. Byrd, R. Gimlin, P.J. Shrestha, G. Benavides, J. Laystrom, D. Carroll: Direct NaBH4/H2O2 fuel cells, J. Power Sources 165(2), 509–516 (2007)CrossRef
[28]
Zurück zum Zitat R.C. Urian, C.J. Patrissi, S.P. Tucker, C.M. Deschenes, F.W. Bielwaski, D.W. Atwater: Direct borohydride/hydrogen peroxide fuel cell development, 43rd Power Sources Conference 2008 (Curran Associates, Red Hook 2011) pp. 295–298 R.C. Urian, C.J. Patrissi, S.P. Tucker, C.M. Deschenes, F.W. Bielwaski, D.W. Atwater: Direct borohydride/hydrogen peroxide fuel cell development, 43rd Power Sources Conference 2008 (Curran Associates, Red Hook 2011) pp. 295–298
[30]
Zurück zum Zitat D.M.F. Santos, C.A.C. Sequeira: Chronopotentiometric investigation of borohydride oxidation at a gold electrode, J. Electrochem. Soc. 157(1), F16–F21 (2010)CrossRef D.M.F. Santos, C.A.C. Sequeira: Chronopotentiometric investigation of borohydride oxidation at a gold electrode, J. Electrochem. Soc. 157(1), F16–F21 (2010)CrossRef
[31]
Zurück zum Zitat C.R. Cloutier, A. Alfantazi, E. Gyenge: Physicochemical transport properties of aqueous sodium metaborate solutions for sodium borohydride hydrogen generation and storage and fuel cell applications, Adv. Mater. Res. 15–17, 267–274 (2006) C.R. Cloutier, A. Alfantazi, E. Gyenge: Physicochemical transport properties of aqueous sodium metaborate solutions for sodium borohydride hydrogen generation and storage and fuel cell applications, Adv. Mater. Res. 15–17, 267–274 (2006)
[32]
Zurück zum Zitat W.C. Schumb: Hydrogen Peroxide, Am. Chem. Soc. Monogr. (Reinhold, New York 1955) W.C. Schumb: Hydrogen Peroxide, Am. Chem. Soc. Monogr. (Reinhold, New York 1955)
[33]
Zurück zum Zitat J. Newman: Current distribution on a rotating disk below limiting current, J. Electrochem. Soc. 113(12), 1235–1241 (1966)CrossRef J. Newman: Current distribution on a rotating disk below limiting current, J. Electrochem. Soc. 113(12), 1235–1241 (1966)CrossRef
[34]
Zurück zum Zitat J.M. Nielsen, A.W. Adamson, J.W. Cobble: The self-diffusion coefficients of the ions in aqueous sodium chloride and sodium sulfate at 25-degrees, J. Am. Chem. Soc. 74(2), 446–451 (1952)CrossRef J.M. Nielsen, A.W. Adamson, J.W. Cobble: The self-diffusion coefficients of the ions in aqueous sodium chloride and sodium sulfate at 25-degrees, J. Am. Chem. Soc. 74(2), 446–451 (1952)CrossRef
[35]
Zurück zum Zitat A. Poisson, J. Chanu: Semi-empirical equations for the partial molar volumes of some ions in water and seawater, Mar. Chem. 8, 289–298 (1980)CrossRef A. Poisson, J. Chanu: Semi-empirical equations for the partial molar volumes of some ions in water and seawater, Mar. Chem. 8, 289–298 (1980)CrossRef
[36]
Zurück zum Zitat T. Okada, S. Møller-Holst, O. Gorseth, S. Kjelstrup: Transport and equilibrium properties of Nafion membranes with H+ and Na+ ions, J. Electroanal. Chem. 442(1/2), 137–145 (1998)CrossRef T. Okada, S. Møller-Holst, O. Gorseth, S. Kjelstrup: Transport and equilibrium properties of Nafion membranes with H+ and Na+ ions, J. Electroanal. Chem. 442(1/2), 137–145 (1998)CrossRef
[37]
Zurück zum Zitat T. Okada, H. Satou, M. Okuno, M. Yuasa: Ion and water transport characteristics of perfluorosulfonated ionomer membranes with H+ and alkali metal cations, J. Phys. Chem. B 106(6), 1267–1273 (2002)CrossRef T. Okada, H. Satou, M. Okuno, M. Yuasa: Ion and water transport characteristics of perfluorosulfonated ionomer membranes with H+ and alkali metal cations, J. Phys. Chem. B 106(6), 1267–1273 (2002)CrossRef
[38]
Zurück zum Zitat C.E. Evans, R.D. Noble, S. Nazeri-Thompson, B. Nazeri, C.A. Koval: Role of conditioning on water uptake and hydraulic permeability of Nafion membranes, J. Membr. Sci. 279(1/2), 521–528 (2006)CrossRef C.E. Evans, R.D. Noble, S. Nazeri-Thompson, B. Nazeri, C.A. Koval: Role of conditioning on water uptake and hydraulic permeability of Nafion membranes, J. Membr. Sci. 279(1/2), 521–528 (2006)CrossRef
[39]
Zurück zum Zitat D.M.F. Santos, C.A.C. Sequeira: Effect of membrane separators on the performance of direct borohydride fuel cells, J. Electrochem. Soc. 159(2), B126–B132 (2012)CrossRef D.M.F. Santos, C.A.C. Sequeira: Effect of membrane separators on the performance of direct borohydride fuel cells, J. Electrochem. Soc. 159(2), B126–B132 (2012)CrossRef
[40]
Zurück zum Zitat N. Lakshminarayanaiah: Transport Phenomena in Membranes (Academic, New York 1969) N. Lakshminarayanaiah: Transport Phenomena in Membranes (Academic, New York 1969)
Metadaten
Titel
Transport in Liquid-Phase Electrochemical Devices
verfasst von
Richard O. Stroman
Greg Jackson
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46657-5_8