Skip to main content

2021 | OriginalPaper | Buchkapitel

Tunable Protein Hydrogels: Present State and Emerging Development

verfasst von : J. Nie, X. Zhang, W. Wang, J. Ren, A.-P. Zeng

Erschienen in: Tunable Hydrogels

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, protein and peptide-based hydrogels have received great attention for applications in biomedicine. Compared to hydrogels based on synthetic materials, they have the decisive advantages of being biological origin, providing cells with a more in vivo-like microenvironment and possessing potential biological activity. Empowered by the steadily deepened understanding of the sequence-structure-function relationship of natural proteins and the rapid development of molecular-biological tools for accurate protein sequence editing, researchers have developed a series of recombinant proteins as building blocks and responsive blocks to design novel functional hydrogels. The use of multi-block design further expands the customizability of protein hydrogels. With the improvement of standardization of preparation and testing methods, protein hydrogels are expected to be widely used in medical treatment, skin care, artificial organs and wearable electronic devices. More recently, the emergence of catalytically active protein hydrogel brings new opportunities for applications of protein hydrogels. It is believed that through integrated approaches of engineering biology and materials sciences novel and hereto unthinkable protein hydrogels and properties may be generated for applications in areas beyond medicine and health, including biotechnology, food and agriculture, and even energy.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu X, Liu J, Lin S, Zhao X (2020) Hydrogel machines. Mater Today 36:102–124CrossRef Liu X, Liu J, Lin S, Zhao X (2020) Hydrogel machines. Mater Today 36:102–124CrossRef
2.
Zurück zum Zitat Cao Y, Mezzenga R (2020) Design principles of food gels. Nat Food 1(2):106–118CrossRef Cao Y, Mezzenga R (2020) Design principles of food gels. Nat Food 1(2):106–118CrossRef
3.
Zurück zum Zitat Liu C, Lei F, Li P, Jiang J, Wang K (2020) Borax crosslinked fenugreek galactomannan hydrogel as potential water-retaining agent in agriculture. Carbohydr Polym 236:116100PubMedCrossRef Liu C, Lei F, Li P, Jiang J, Wang K (2020) Borax crosslinked fenugreek galactomannan hydrogel as potential water-retaining agent in agriculture. Carbohydr Polym 236:116100PubMedCrossRef
4.
Zurück zum Zitat Song B, Liang H, Sun R, Peng P, Jiang Y, She D (2020) Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. Int J Biol Macromol 144:219–230PubMedCrossRef Song B, Liang H, Sun R, Peng P, Jiang Y, She D (2020) Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. Int J Biol Macromol 144:219–230PubMedCrossRef
5.
Zurück zum Zitat Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRef Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRef
7.
Zurück zum Zitat Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1(12) Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1(12)
8.
Zurück zum Zitat Motte S, Kaufman LJ (2013) Strain stiffening in collagen I networks. Biopolymers 99(1):35–46PubMedCrossRef Motte S, Kaufman LJ (2013) Strain stiffening in collagen I networks. Biopolymers 99(1):35–46PubMedCrossRef
9.
Zurück zum Zitat Antoine EE, Vlachos PP, Rylander MN (2015) Tunable collagen I hydrogels for engineered physiological tissue micro-environments. PLoS One 10(3):e0122500PubMedPubMedCentralCrossRef Antoine EE, Vlachos PP, Rylander MN (2015) Tunable collagen I hydrogels for engineered physiological tissue micro-environments. PLoS One 10(3):e0122500PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Yang K, Sun J, Guo Z, Yang J, Wei D, Tan Y, Guo L, Luo H, Fan H, Zhang X (2018) Methacrylamide-modified collagen hydrogel with improved anti-actin-mediated matrix contraction behavior. J Mater Chem B 6(45):7543–7555PubMedCrossRef Yang K, Sun J, Guo Z, Yang J, Wei D, Tan Y, Guo L, Luo H, Fan H, Zhang X (2018) Methacrylamide-modified collagen hydrogel with improved anti-actin-mediated matrix contraction behavior. J Mater Chem B 6(45):7543–7555PubMedCrossRef
11.
Zurück zum Zitat Liu A, Wu K, Chen S, Wu C, Gao D, Chen L, Wei D, Luo H, Sun J, Fan H (2020) Tunable fast relaxation in imine-based nanofibrillar hydrogels stimulates cell response through TRPV4 activation. Biomacromolecules 21(9):3745–3755PubMedCrossRef Liu A, Wu K, Chen S, Wu C, Gao D, Chen L, Wei D, Luo H, Sun J, Fan H (2020) Tunable fast relaxation in imine-based nanofibrillar hydrogels stimulates cell response through TRPV4 activation. Biomacromolecules 21(9):3745–3755PubMedCrossRef
12.
Zurück zum Zitat Whittaker JL, Choudhury NR, Dutta NK, Zannettino A (2014) Facile and rapid ruthenium mediated photo-crosslinking of Bombyx mori silk fibroin. J Mater Chem B 2(37):6259–6270PubMedCrossRef Whittaker JL, Choudhury NR, Dutta NK, Zannettino A (2014) Facile and rapid ruthenium mediated photo-crosslinking of Bombyx mori silk fibroin. J Mater Chem B 2(37):6259–6270PubMedCrossRef
13.
Zurück zum Zitat Li Z, Zheng Z, Yang Y, Fang G, Yao J, Shao Z, Chen X (2016) Robust protein hydrogels from silkworm silk. ACS Sustain Chem Eng 4(3):1500–1506CrossRef Li Z, Zheng Z, Yang Y, Fang G, Yao J, Shao Z, Chen X (2016) Robust protein hydrogels from silkworm silk. ACS Sustain Chem Eng 4(3):1500–1506CrossRef
14.
Zurück zum Zitat Zhu Z, Ling S, Yeo J, Zhao S, Tozzi L, Buehler MJ, Omenetto F, Li C, Kaplan DL (2018) High-strength, durable all-silk fibroin hydrogels with versatile processability toward multifunctional applications. Adv Funct Mater 28(10) Zhu Z, Ling S, Yeo J, Zhao S, Tozzi L, Buehler MJ, Omenetto F, Li C, Kaplan DL (2018) High-strength, durable all-silk fibroin hydrogels with versatile processability toward multifunctional applications. Adv Funct Mater 28(10)
15.
Zurück zum Zitat Kuang D, Jiang F, Wu F, Kaur K, Ghosh S, Kundu SC, Lu S (2019) Highly elastomeric photocurable silk hydrogels. Int J Biol Macromol 134:838–845PubMedCrossRef Kuang D, Jiang F, Wu F, Kaur K, Ghosh S, Kundu SC, Lu S (2019) Highly elastomeric photocurable silk hydrogels. Int J Biol Macromol 134:838–845PubMedCrossRef
16.
Zurück zum Zitat Buitrago JO, Patel KD, El-Fiqi A, Lee JH, Kundu B, Lee HH, Kim HW (2018) Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties. Acta Biomater 69:218–233PubMedCrossRef Buitrago JO, Patel KD, El-Fiqi A, Lee JH, Kundu B, Lee HH, Kim HW (2018) Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties. Acta Biomater 69:218–233PubMedCrossRef
17.
Zurück zum Zitat Roberts S, Harmon TS, Schaal JL, Miao V, Li KJ, Hunt A, Wen Y, Oas TG, Collier JH, Pappu RV, Chilkoti A (2018) Injectable tissue integrating networks from recombinant polypeptides with tunable order. Nat Mater 17(12):1154–1163PubMedPubMedCentralCrossRef Roberts S, Harmon TS, Schaal JL, Miao V, Li KJ, Hunt A, Wen Y, Oas TG, Collier JH, Pappu RV, Chilkoti A (2018) Injectable tissue integrating networks from recombinant polypeptides with tunable order. Nat Mater 17(12):1154–1163PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Ghoorchian A, Simon JR, Bharti B, Han W, Zhao X, Chilkoti A, López GP (2015) Bioinspired reversibly cross-linked hydrogels comprising polypeptide micelles exhibit enhanced mechanical properties. Adv Funct Mater 25(21):3122–3130CrossRef Ghoorchian A, Simon JR, Bharti B, Han W, Zhao X, Chilkoti A, López GP (2015) Bioinspired reversibly cross-linked hydrogels comprising polypeptide micelles exhibit enhanced mechanical properties. Adv Funct Mater 25(21):3122–3130CrossRef
19.
Zurück zum Zitat Gonzalez MA, Simon JR, Ghoorchian A, Scholl Z, Lin S, Rubinstein M, Marszalek P, Chilkoti A, Lopez GP, Zhao X (2017) Strong, tough, stretchable, and self-adhesive hydrogels from intrinsically unstructured proteins. Adv Mater 29(10) Gonzalez MA, Simon JR, Ghoorchian A, Scholl Z, Lin S, Rubinstein M, Marszalek P, Chilkoti A, Lopez GP, Zhao X (2017) Strong, tough, stretchable, and self-adhesive hydrogels from intrinsically unstructured proteins. Adv Mater 29(10)
20.
Zurück zum Zitat Xu D, Asai D, Chilkoti A, Craig SL (2012) Rheological properties of cysteine-containing elastin-like polypeptide solutions and hydrogels. Biomacromolecules 13(8):2315–2321PubMedPubMedCentralCrossRef Xu D, Asai D, Chilkoti A, Craig SL (2012) Rheological properties of cysteine-containing elastin-like polypeptide solutions and hydrogels. Biomacromolecules 13(8):2315–2321PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Huang W, Tarakanova A, Dinjaski N, Wang Q, Xia X, Chen Y, Wong JY, Buehler MJ, Kaplan DL (2016) Design of multistimuli responsive hydrogels using integrated modeling and genetically engineered silk-elastin-like proteins. Adv Funct Mater 26(23):4113–4123PubMedPubMedCentralCrossRef Huang W, Tarakanova A, Dinjaski N, Wang Q, Xia X, Chen Y, Wong JY, Buehler MJ, Kaplan DL (2016) Design of multistimuli responsive hydrogels using integrated modeling and genetically engineered silk-elastin-like proteins. Adv Funct Mater 26(23):4113–4123PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Mizuguchi Y, Mashimo Y, Mie M, Kobatake E (2020) Temperature-responsive multifunctional protein hydrogels with elastin-like polypeptides for 3-D angiogenesis. Biomacromolecules 21(3):1126–1135PubMedCrossRef Mizuguchi Y, Mashimo Y, Mie M, Kobatake E (2020) Temperature-responsive multifunctional protein hydrogels with elastin-like polypeptides for 3-D angiogenesis. Biomacromolecules 21(3):1126–1135PubMedCrossRef
23.
Zurück zum Zitat Hu X, Xia XX, Huang SC, Qian ZG (2019) Development of adhesive and conductive resilin-based hydrogels for wearable sensors. Biomacromolecules 20(9):3283–3293PubMedCrossRef Hu X, Xia XX, Huang SC, Qian ZG (2019) Development of adhesive and conductive resilin-based hydrogels for wearable sensors. Biomacromolecules 20(9):3283–3293PubMedCrossRef
24.
Zurück zum Zitat Li L, Tong Z, Jia X, Kiick KL (2013) Resilin-like polypeptide hydrogels engineered for versatile biological functions. Soft Matter 9(3):665–673PubMedCrossRef Li L, Tong Z, Jia X, Kiick KL (2013) Resilin-like polypeptide hydrogels engineered for versatile biological functions. Soft Matter 9(3):665–673PubMedCrossRef
25.
Zurück zum Zitat Li L, Stiadle JM, Levendoski EE, Lau HK, Thibeault SL, Kiick KL (2018) Biocompatibility of injectable resilin-based hydrogels. J Biomed Mater Res A 106(8):2229–2242PubMedPubMedCentralCrossRef Li L, Stiadle JM, Levendoski EE, Lau HK, Thibeault SL, Kiick KL (2018) Biocompatibility of injectable resilin-based hydrogels. J Biomed Mater Res A 106(8):2229–2242PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Whittaker JL, Dutta NK, Elvin CM, Choudhury NR (2015) Fabrication of highly elastic resilin/silk fibroin based hydrogel by rapid photo-crosslinking reaction. J Mater Chem B 3(32):6576–6579PubMedCrossRef Whittaker JL, Dutta NK, Elvin CM, Choudhury NR (2015) Fabrication of highly elastic resilin/silk fibroin based hydrogel by rapid photo-crosslinking reaction. J Mater Chem B 3(32):6576–6579PubMedCrossRef
27.
Zurück zum Zitat Bracalello A, Santopietro V, Vassalli M, Marletta G, Del Gaudio R, Bochicchio B, Pepe A (2011) Design and production of a chimeric resilin-, elastin-, and collagen-like engineered polypeptide. Biomacromolecules 12(8):2957–2965PubMedCrossRef Bracalello A, Santopietro V, Vassalli M, Marletta G, Del Gaudio R, Bochicchio B, Pepe A (2011) Design and production of a chimeric resilin-, elastin-, and collagen-like engineered polypeptide. Biomacromolecules 12(8):2957–2965PubMedCrossRef
28.
Zurück zum Zitat Ham TR, Lee RT, Han S, Haque S, Vodovotz Y, Gu J, Burnett LR, Tomblyn S, Saul JM (2016) Tunable keratin hydrogels for controlled erosion and growth factor delivery. Biomacromolecules 17(1):225–236PubMedCrossRef Ham TR, Lee RT, Han S, Haque S, Vodovotz Y, Gu J, Burnett LR, Tomblyn S, Saul JM (2016) Tunable keratin hydrogels for controlled erosion and growth factor delivery. Biomacromolecules 17(1):225–236PubMedCrossRef
29.
Zurück zum Zitat Cao Y, Yao Y, Li Y, Yang X, Cao Z, Yang G (2019) Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering. J Colloid Interface Sci 544:121–129PubMedCrossRef Cao Y, Yao Y, Li Y, Yang X, Cao Z, Yang G (2019) Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering. J Colloid Interface Sci 544:121–129PubMedCrossRef
30.
Zurück zum Zitat Esparza Y, Ullah A, Wu J (2018) Molecular mechanism and characterization of self-assembly of feather keratin gelation. Int J Biol Macromol 107(Pt A):290–296PubMedCrossRef Esparza Y, Ullah A, Wu J (2018) Molecular mechanism and characterization of self-assembly of feather keratin gelation. Int J Biol Macromol 107(Pt A):290–296PubMedCrossRef
31.
Zurück zum Zitat Wang S, Wang Z, Foo SE, Tan NS, Yuan Y, Lin W, Zhang Z, Ng KW (2015) Culturing fibroblasts in 3D human hair keratin hydrogels. ACS Appl Mater Interfaces 7(9):5187–5198PubMedCrossRef Wang S, Wang Z, Foo SE, Tan NS, Yuan Y, Lin W, Zhang Z, Ng KW (2015) Culturing fibroblasts in 3D human hair keratin hydrogels. ACS Appl Mater Interfaces 7(9):5187–5198PubMedCrossRef
32.
Zurück zum Zitat Han S, Ham TR, Haque S, Sparks JL, Saul JM (2015) Alkylation of human hair keratin for tunable hydrogel erosion and drug delivery in tissue engineering applications. Acta Biomater 23:201–213PubMedPubMedCentralCrossRef Han S, Ham TR, Haque S, Sparks JL, Saul JM (2015) Alkylation of human hair keratin for tunable hydrogel erosion and drug delivery in tissue engineering applications. Acta Biomater 23:201–213PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Jiang B, Liu X, Yang C, Yang Z, Luo J, Kou S, Liu K, Sun F (2020) Injectable, photoresponsive hydrogels for delivering neuroprotective proteins enabled by metal-directed protein assembly. Sci Adv 6(41):eabc4824PubMedPubMedCentralCrossRef Jiang B, Liu X, Yang C, Yang Z, Luo J, Kou S, Liu K, Sun F (2020) Injectable, photoresponsive hydrogels for delivering neuroprotective proteins enabled by metal-directed protein assembly. Sci Adv 6(41):eabc4824PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Marquardt LM, Doulames VM, Wang AT, Dubbin K, Suhar RA, Kratochvil MJ, Medress ZA, Plant GW, Heilshorn SC (2020) Designer, injectable gels to prevent transplanted Schwann cell loss during spinal cord injury therapy. Sci Adv 6(14):eaaz1039PubMedPubMedCentralCrossRef Marquardt LM, Doulames VM, Wang AT, Dubbin K, Suhar RA, Kratochvil MJ, Medress ZA, Plant GW, Heilshorn SC (2020) Designer, injectable gels to prevent transplanted Schwann cell loss during spinal cord injury therapy. Sci Adv 6(14):eaaz1039PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Traverse JH, Henry TD, Dib N, Patel AN, Pepine C, Schaer GL, DeQuach JA, Kinsey AM, Chamberlin P, Christman KL (2019) First-in-Man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. JACC Basic Transl Sci 4(6):659–669PubMedPubMedCentralCrossRef Traverse JH, Henry TD, Dib N, Patel AN, Pepine C, Schaer GL, DeQuach JA, Kinsey AM, Chamberlin P, Christman KL (2019) First-in-Man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. JACC Basic Transl Sci 4(6):659–669PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Griffanti G, Rezabeigi E, Li J, Murshed M, Nazhat SN (2019) Rapid biofabrication of printable dense collagen bioinks of tunable properties. Adv Funct Mater 30(4):1903874CrossRef Griffanti G, Rezabeigi E, Li J, Murshed M, Nazhat SN (2019) Rapid biofabrication of printable dense collagen bioinks of tunable properties. Adv Funct Mater 30(4):1903874CrossRef
37.
Zurück zum Zitat Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, Bliley JM, Campbell PG, Feinberg AW (2019) 3D bioprinting of collagen to rebuild components of the human heart. Science 365(6452):482–487PubMedCrossRef Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, Bliley JM, Campbell PG, Feinberg AW (2019) 3D bioprinting of collagen to rebuild components of the human heart. Science 365(6452):482–487PubMedCrossRef
38.
Zurück zum Zitat Gogurla N, Roy B, Kim S (2020) Self-powered artificial skin made of engineered silk protein hydrogel. Nano Energy 77:105242CrossRef Gogurla N, Roy B, Kim S (2020) Self-powered artificial skin made of engineered silk protein hydrogel. Nano Energy 77:105242CrossRef
39.
Zurück zum Zitat Torculas M, Medina J, Xue W, Hu X (2016) Protein-based bioelectronics. ACS Biomater Sci Eng 2(8):1211–1223PubMedCrossRef Torculas M, Medina J, Xue W, Hu X (2016) Protein-based bioelectronics. ACS Biomater Sci Eng 2(8):1211–1223PubMedCrossRef
40.
Zurück zum Zitat Luo J, Sun F (2020) Calcium-responsive hydrogels enabled by inducible protein–protein interactions. Polym Chem 11(31):4973–4977CrossRef Luo J, Sun F (2020) Calcium-responsive hydrogels enabled by inducible protein–protein interactions. Polym Chem 11(31):4973–4977CrossRef
42.
Zurück zum Zitat Foo CTSWP, Lee JS, Mulyasasmita W, Parisi-Amon A, Heilshorn SC (2009) Two-component protein-engineered physical hydrogels for cell encapsulation. Proc Natl Acad Sci U S A 106(52):22067–22072CrossRef Foo CTSWP, Lee JS, Mulyasasmita W, Parisi-Amon A, Heilshorn SC (2009) Two-component protein-engineered physical hydrogels for cell encapsulation. Proc Natl Acad Sci U S A 106(52):22067–22072CrossRef
43.
Zurück zum Zitat Li Y, Xue B, Cao Y (2020) 100th anniversary of macromolecular science viewpoint: synthetic protein hydrogels. ACS Macro Lett 9(4):512–524CrossRef Li Y, Xue B, Cao Y (2020) 100th anniversary of macromolecular science viewpoint: synthetic protein hydrogels. ACS Macro Lett 9(4):512–524CrossRef
45.
Zurück zum Zitat Marston WA, Sabolinski ML, Parsons NB, Kirsner RS (2014) Comparative effectiveness of a bilayered living cellular construct and a porcine collagen wound dressing in the treatment of venous leg ulcers. Wound Repair Regen 22(3):334–340PubMedCrossRef Marston WA, Sabolinski ML, Parsons NB, Kirsner RS (2014) Comparative effectiveness of a bilayered living cellular construct and a porcine collagen wound dressing in the treatment of venous leg ulcers. Wound Repair Regen 22(3):334–340PubMedCrossRef
46.
Zurück zum Zitat Gelain F, Luo Z, Zhang S (2020) Self-assembling peptide EAK16 and RADA16 nanofiber scaffold hydrogel. Chem Rev 120(24):13434–13460PubMedCrossRef Gelain F, Luo Z, Zhang S (2020) Self-assembling peptide EAK16 and RADA16 nanofiber scaffold hydrogel. Chem Rev 120(24):13434–13460PubMedCrossRef
47.
Zurück zum Zitat Varanko A, Saha S, Chilkoti A (2020) Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev 156:133–187PubMedPubMedCentralCrossRef Varanko A, Saha S, Chilkoti A (2020) Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev 156:133–187PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Lu P, Min D, DiMaio F, Wei KY, Vahey MD, Boyken SE, Chen Z, Fallas JA, Ueda G, Sheffler W, Mulligan VK, Xu W, Bowie JU, Baker D (2018) Accurate computational design of multipass transmembrane proteins. Science 359(6379):1042–1046PubMedPubMedCentralCrossRef Lu P, Min D, DiMaio F, Wei KY, Vahey MD, Boyken SE, Chen Z, Fallas JA, Ueda G, Sheffler W, Mulligan VK, Xu W, Bowie JU, Baker D (2018) Accurate computational design of multipass transmembrane proteins. Science 359(6379):1042–1046PubMedPubMedCentralCrossRef
49.
50.
Zurück zum Zitat Williams DF (2014) There is no such thing as a biocompatible material. Biomaterials 35(38):10009–10014PubMedCrossRef Williams DF (2014) There is no such thing as a biocompatible material. Biomaterials 35(38):10009–10014PubMedCrossRef
51.
Zurück zum Zitat Liu D, Nikoo M, Boran G, Zhou P, Regenstein JM (2015) Collagen and gelatin. Annu Rev Food Sci Technol 6:527–557PubMedCrossRef Liu D, Nikoo M, Boran G, Zhou P, Regenstein JM (2015) Collagen and gelatin. Annu Rev Food Sci Technol 6:527–557PubMedCrossRef
52.
Zurück zum Zitat An B, Lin YS, Brodsky B (2016) Collagen interactions: drug design and delivery. Adv Drug Deliv Rev 97:69–84PubMedCrossRef An B, Lin YS, Brodsky B (2016) Collagen interactions: drug design and delivery. Adv Drug Deliv Rev 97:69–84PubMedCrossRef
53.
Zurück zum Zitat Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3(3):1863–1887PubMedCentralCrossRef Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3(3):1863–1887PubMedCentralCrossRef
54.
Zurück zum Zitat Avila Rodriguez MI, Rodriguez Barroso LG, Sanchez ML (2018) Collagen: a review on its sources and potential cosmetic applications. J Cosmet Dermatol 17(1):20–26PubMedCrossRef Avila Rodriguez MI, Rodriguez Barroso LG, Sanchez ML (2018) Collagen: a review on its sources and potential cosmetic applications. J Cosmet Dermatol 17(1):20–26PubMedCrossRef
55.
Zurück zum Zitat Subhan F, Hussain Z, Tauseef I, Shehzad A, Wahid F (2020) A review on recent advances and applications of fish collagen. Crit Rev Food Sci Nutr:1–11 Subhan F, Hussain Z, Tauseef I, Shehzad A, Wahid F (2020) A review on recent advances and applications of fish collagen. Crit Rev Food Sci Nutr:1–11
56.
Zurück zum Zitat Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI (2019) The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater 31(1):e1801651PubMedCrossRef Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI (2019) The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater 31(1):e1801651PubMedCrossRef
57.
Zurück zum Zitat Hulmes DJ (2002) Building collagen molecules, fibrils, and suprafibrillar structures. J Struct Biol 137(1-2):2–10PubMedCrossRef Hulmes DJ (2002) Building collagen molecules, fibrils, and suprafibrillar structures. J Struct Biol 137(1-2):2–10PubMedCrossRef
58.
Zurück zum Zitat Kadler KE, Baldock C, Bella J, Boot-Handford RP (2007) Collagens at a glance. J Cell Sci 120(Pt 12):1955–1958PubMedCrossRef Kadler KE, Baldock C, Bella J, Boot-Handford RP (2007) Collagens at a glance. J Cell Sci 120(Pt 12):1955–1958PubMedCrossRef
60.
Zurück zum Zitat Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202(23):3295–3303PubMedCrossRef Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202(23):3295–3303PubMedCrossRef
61.
Zurück zum Zitat Gelse K, Poschl E, Aigner T (2003) Collagens--structure, function, and biosynthesis. Adv Drug Deliv Rev 55(12):1531–1546PubMedCrossRef Gelse K, Poschl E, Aigner T (2003) Collagens--structure, function, and biosynthesis. Adv Drug Deliv Rev 55(12):1531–1546PubMedCrossRef
62.
Zurück zum Zitat Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17(3):319–336PubMedCrossRef Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17(3):319–336PubMedCrossRef
63.
Zurück zum Zitat Srivastava A, Isa IL, Rooney P, Pandit A (2017) Bioengineered three-dimensional diseased intervertebral disc model revealed inflammatory crosstalk. Biomaterials 123:127–141PubMedCrossRef Srivastava A, Isa IL, Rooney P, Pandit A (2017) Bioengineered three-dimensional diseased intervertebral disc model revealed inflammatory crosstalk. Biomaterials 123:127–141PubMedCrossRef
64.
Zurück zum Zitat Moriarty N, Pandit A, Dowd E (2017) Encapsulation of primary dopaminergic neurons in a GDNF-loaded collagen hydrogel increases their survival, re-innervation and function after intra-striatal transplantation. Sci Rep 7(1):16033PubMedPubMedCentralCrossRef Moriarty N, Pandit A, Dowd E (2017) Encapsulation of primary dopaminergic neurons in a GDNF-loaded collagen hydrogel increases their survival, re-innervation and function after intra-striatal transplantation. Sci Rep 7(1):16033PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Parmar PA, St-Pierre JP, Chow LW, Spicer CD, Stoichevska V, Peng YY, Werkmeister JA, Ramshaw JAM, Stevens MM (2017) Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels. Acta Biomater 51:75–88PubMedPubMedCentralCrossRef Parmar PA, St-Pierre JP, Chow LW, Spicer CD, Stoichevska V, Peng YY, Werkmeister JA, Ramshaw JAM, Stevens MM (2017) Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels. Acta Biomater 51:75–88PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Antoine EE, Vlachos PP, Rylander MN (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B Rev 20(6):683–696PubMedPubMedCentralCrossRef Antoine EE, Vlachos PP, Rylander MN (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B Rev 20(6):683–696PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Ma L, Gao C, Mao Z, Zhou J, Shen J (2004) Enhanced biological stability of collagen porous scaffolds by using amino acids as novel cross-linking bridges. Biomaterials 25(15):2997–3004PubMedCrossRef Ma L, Gao C, Mao Z, Zhou J, Shen J (2004) Enhanced biological stability of collagen porous scaffolds by using amino acids as novel cross-linking bridges. Biomaterials 25(15):2997–3004PubMedCrossRef
68.
Zurück zum Zitat Song E, Yeon Kim S, Chun T, Byun HJ, Lee YM (2006) Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials 27(15):2951–2961PubMedCrossRef Song E, Yeon Kim S, Chun T, Byun HJ, Lee YM (2006) Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials 27(15):2951–2961PubMedCrossRef
69.
Zurück zum Zitat Yang Z, Kou S, Wei X, Zhang F, Li F, Wang X-W, Lin Y, Wan C, Zhang W-B, Sun F (2018) Genetically programming stress-relaxation behavior in entirely protein-based molecular networks. ACS Macro Lett 7(12):1468–1474CrossRef Yang Z, Kou S, Wei X, Zhang F, Li F, Wang X-W, Lin Y, Wan C, Zhang W-B, Sun F (2018) Genetically programming stress-relaxation behavior in entirely protein-based molecular networks. ACS Macro Lett 7(12):1468–1474CrossRef
70.
Zurück zum Zitat Fontana G, Thomas D, Collin E, Pandit A (2014) Microgel microenvironment primes adipose-derived stem cells towards an NP cells-like phenotype. Adv Healthc Mater 3(12):2012–2022PubMedCrossRef Fontana G, Thomas D, Collin E, Pandit A (2014) Microgel microenvironment primes adipose-derived stem cells towards an NP cells-like phenotype. Adv Healthc Mater 3(12):2012–2022PubMedCrossRef
71.
Zurück zum Zitat Skrzeszewska PJ, Jong LN, de Wolf FA, Cohen Stuart MA, van der Gucht J (2011) Shape-memory effects in biopolymer networks with collagen-like transient nodes. Biomacromolecules 12(6):2285–2292PubMedCrossRef Skrzeszewska PJ, Jong LN, de Wolf FA, Cohen Stuart MA, van der Gucht J (2011) Shape-memory effects in biopolymer networks with collagen-like transient nodes. Biomacromolecules 12(6):2285–2292PubMedCrossRef
72.
Zurück zum Zitat Delgado LM, Fuller K, Zeugolis DI (2017) Collagen cross-linking: biophysical, biochemical, and biological response analysis. Tissue Eng Part A 23(14):1064–1077PubMedCrossRef Delgado LM, Fuller K, Zeugolis DI (2017) Collagen cross-linking: biophysical, biochemical, and biological response analysis. Tissue Eng Part A 23(14):1064–1077PubMedCrossRef
73.
Zurück zum Zitat McDade JK, Brennan-Pierce EP, Ariganello MB, Labow RS, Michael Lee J (2013) Interactions of U937 macrophage-like cells with decellularized pericardial matrix materials: influence of crosslinking treatment. Acta Biomater 9(7):7191–7199PubMedCrossRef McDade JK, Brennan-Pierce EP, Ariganello MB, Labow RS, Michael Lee J (2013) Interactions of U937 macrophage-like cells with decellularized pericardial matrix materials: influence of crosslinking treatment. Acta Biomater 9(7):7191–7199PubMedCrossRef
74.
Zurück zum Zitat Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416PubMedCrossRef Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416PubMedCrossRef
76.
Zurück zum Zitat Wang HY, Zhang YQ (2015) Processing silk hydrogel and its applications in biomedical materials. Biotechnol Prog 31(3):630–640PubMedCrossRef Wang HY, Zhang YQ (2015) Processing silk hydrogel and its applications in biomedical materials. Biotechnol Prog 31(3):630–640PubMedCrossRef
77.
Zurück zum Zitat Jin H-J, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424(6952):1057–1061PubMedCrossRef Jin H-J, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424(6952):1057–1061PubMedCrossRef
78.
Zurück zum Zitat Kim U-J, Park J, Li C, Jin H-J, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5(3):786–792PubMedCrossRef Kim U-J, Park J, Li C, Jin H-J, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5(3):786–792PubMedCrossRef
79.
Zurück zum Zitat Takahashi Y, Gehoh M, Yuzuriha K (1999) Structure refinement and diffuse streak scattering of silk (Bombyx mori ). Int J Biol Macromol 24(2-3):127–138PubMedCrossRef Takahashi Y, Gehoh M, Yuzuriha K (1999) Structure refinement and diffuse streak scattering of silk (Bombyx mori ). Int J Biol Macromol 24(2-3):127–138PubMedCrossRef
80.
Zurück zum Zitat Mita K, Ichimura S, James TC (1994) Highly repetitive structure and its organization of the silk fibroin gene. J Mol Evol 38(6):583–592PubMedCrossRef Mita K, Ichimura S, James TC (1994) Highly repetitive structure and its organization of the silk fibroin gene. J Mol Evol 38(6):583–592PubMedCrossRef
81.
Zurück zum Zitat Rockwood DN, Preda RC, Yucel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6(10):1612–2631PubMedCrossRef Rockwood DN, Preda RC, Yucel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6(10):1612–2631PubMedCrossRef
83.
Zurück zum Zitat Zheng H, Zuo B (2021) Functional silk fibroin hydrogels: preparation, properties and applications. J Mater Chem B 9:1238–1258 Zheng H, Zuo B (2021) Functional silk fibroin hydrogels: preparation, properties and applications. J Mater Chem B 9:1238–1258
84.
Zurück zum Zitat Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ, Seo YB, Sultan MT, Lee OJ, Lee JS, Yoon SI, Hong IS, Khang G, Lee SJ, Yoo JJ, Park CH (2018) Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun 9(1):1620PubMedPubMedCentralCrossRef Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ, Seo YB, Sultan MT, Lee OJ, Lee JS, Yoon SI, Hong IS, Khang G, Lee SJ, Yoo JJ, Park CH (2018) Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun 9(1):1620PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Catto V, Fare S, Cattaneo I, Figliuzzi M, Alessandrino A, Freddi G, Remuzzi A, Tanzi MC (2015) Small diameter electrospun silk fibroin vascular grafts: mechanical properties, in vitro biodegradability, and in vivo biocompatibility. Korean J Couns Psychother 54:101–111 Catto V, Fare S, Cattaneo I, Figliuzzi M, Alessandrino A, Freddi G, Remuzzi A, Tanzi MC (2015) Small diameter electrospun silk fibroin vascular grafts: mechanical properties, in vitro biodegradability, and in vivo biocompatibility. Korean J Couns Psychother 54:101–111
86.
Zurück zum Zitat Gholipourmalekabadi M, Sapru S, Samadikuchaksaraei A, Reis RL, Kaplan DL, Kundu SC (2020) Silk fibroin for skin injury repair: where do things stand? Adv Drug Deliv Rev 153:28–53PubMedCrossRef Gholipourmalekabadi M, Sapru S, Samadikuchaksaraei A, Reis RL, Kaplan DL, Kundu SC (2020) Silk fibroin for skin injury repair: where do things stand? Adv Drug Deliv Rev 153:28–53PubMedCrossRef
87.
Zurück zum Zitat Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470PubMedCrossRef Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470PubMedCrossRef
88.
Zurück zum Zitat Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26(2):147–155PubMedCrossRef Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26(2):147–155PubMedCrossRef
89.
Zurück zum Zitat Horan RL, Bramono DS, Stanley JR, Simmons Q, Chen J, Boepple HE, Altman GH (2009) Biological and biomechanical assessment of a long-term bioresorbable silk-derived surgical mesh in an abdominal body wall defect model. Hernia 13(2):189–199PubMedCrossRef Horan RL, Bramono DS, Stanley JR, Simmons Q, Chen J, Boepple HE, Altman GH (2009) Biological and biomechanical assessment of a long-term bioresorbable silk-derived surgical mesh in an abdominal body wall defect model. Hernia 13(2):189–199PubMedCrossRef
90.
Zurück zum Zitat Wang C, Xia K, Zhang Y, Kaplan DL (2019) Silk-based advanced materials for soft electronics. Acc Chem Res 52(10):2916–2927PubMedCrossRef Wang C, Xia K, Zhang Y, Kaplan DL (2019) Silk-based advanced materials for soft electronics. Acc Chem Res 52(10):2916–2927PubMedCrossRef
91.
Zurück zum Zitat Daamen WF, Veerkamp JH, van Hest JC, van Kuppevelt TH (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28(30):4378–4398PubMedCrossRef Daamen WF, Veerkamp JH, van Hest JC, van Kuppevelt TH (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28(30):4378–4398PubMedCrossRef
92.
Zurück zum Zitat Schrader CU, Heinz A, Majovsky P, Karaman Mayack B, Brinckmann J, Sippl W, Schmelzer CEH (2018) Elastin is heterogeneously cross-linked. J Biol Chem 293(39):15107–15119PubMedPubMedCentralCrossRef Schrader CU, Heinz A, Majovsky P, Karaman Mayack B, Brinckmann J, Sippl W, Schmelzer CEH (2018) Elastin is heterogeneously cross-linked. J Biol Chem 293(39):15107–15119PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Tarakanova A, Yeo GC, Baldock C, Weiss AS, Buehler MJ (2018) Molecular model of human tropoelastin and implications of associated mutations. Proc Natl Acad Sci U S A 115(28):7338–7343PubMedPubMedCentralCrossRef Tarakanova A, Yeo GC, Baldock C, Weiss AS, Buehler MJ (2018) Molecular model of human tropoelastin and implications of associated mutations. Proc Natl Acad Sci U S A 115(28):7338–7343PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Muiznieks LD, Weiss AS, Keeley FW (2010) Structural disorder and dynamics of elastin. Biochem Cell Biol 88(2):239–250PubMedCrossRef Muiznieks LD, Weiss AS, Keeley FW (2010) Structural disorder and dynamics of elastin. Biochem Cell Biol 88(2):239–250PubMedCrossRef
95.
Zurück zum Zitat Urry DW (1992) Free-energy transduction in polypeptides and proteins based on inverse temperature transitions. Prog Biophys Mol Biol 57:23–57PubMedCrossRef Urry DW (1992) Free-energy transduction in polypeptides and proteins based on inverse temperature transitions. Prog Biophys Mol Biol 57:23–57PubMedCrossRef
96.
Zurück zum Zitat Urry DW (1993) Molecular machines : how motion and other functions of living organisms can result from reversible chemical changes. Angew Chem Int Ed Engl 32(6):819–841CrossRef Urry DW (1993) Molecular machines : how motion and other functions of living organisms can result from reversible chemical changes. Angew Chem Int Ed Engl 32(6):819–841CrossRef
97.
Zurück zum Zitat Li B, Daggett V (2002) Molecular basis for the extensibility of elastin. J Muscle Res Cell Motil 23(5):561–573PubMedCrossRef Li B, Daggett V (2002) Molecular basis for the extensibility of elastin. J Muscle Res Cell Motil 23(5):561–573PubMedCrossRef
98.
Zurück zum Zitat D'Andrea P, Civita D, Cok M, Ulloa Severino L, Vita F, Scaini D, Casalis L, Lorenzon P, Donati I, Bandiera A (2017) Myoblast adhesion, proliferation and differentiation on human elastin-like polypeptide (HELP) hydrogels. J Appl Biomater Funct Mater 15(1):e43–e53PubMed D'Andrea P, Civita D, Cok M, Ulloa Severino L, Vita F, Scaini D, Casalis L, Lorenzon P, Donati I, Bandiera A (2017) Myoblast adhesion, proliferation and differentiation on human elastin-like polypeptide (HELP) hydrogels. J Appl Biomater Funct Mater 15(1):e43–e53PubMed
99.
Zurück zum Zitat Lao UL, Sun M, Matsumoto M, Mulchandani A, Chen W (2008) Genetic engineering of self-assembled protein hydrogel based on elastin-like sequences with metal binding functionality. Biomacromolecules 8(12):3736–3739CrossRef Lao UL, Sun M, Matsumoto M, Mulchandani A, Chen W (2008) Genetic engineering of self-assembled protein hydrogel based on elastin-like sequences with metal binding functionality. Biomacromolecules 8(12):3736–3739CrossRef
100.
Zurück zum Zitat Saxena R, Nanjan MJ (2015) Elastin-like polypeptides and their applications in anticancer drug delivery systems: a review. Drug Deliv 22(2):156–167PubMedCrossRef Saxena R, Nanjan MJ (2015) Elastin-like polypeptides and their applications in anticancer drug delivery systems: a review. Drug Deliv 22(2):156–167PubMedCrossRef
101.
Zurück zum Zitat Wen Q, Mithieux SM, Weiss AS (2020) Elastin biomaterials in dermal repair. Trends Biotechnol 38(3):280–291PubMedCrossRef Wen Q, Mithieux SM, Weiss AS (2020) Elastin biomaterials in dermal repair. Trends Biotechnol 38(3):280–291PubMedCrossRef
102.
Zurück zum Zitat Wright ER, McMillan RA, Cooper A, Apkarian RP, Conticello VP (2002) Thermoplastic elastomer hydrogels via self-assembly of an elastin-mimetic triblock polypeptide. Adv Funct Mater 12(2):149–154CrossRef Wright ER, McMillan RA, Cooper A, Apkarian RP, Conticello VP (2002) Thermoplastic elastomer hydrogels via self-assembly of an elastin-mimetic triblock polypeptide. Adv Funct Mater 12(2):149–154CrossRef
103.
Zurück zum Zitat Zhang YN, Avery RK, Vallmajo-Martin Q, Assmann A, Vegh A, Memic A, Olsen BD, Annabi N, Khademhosseini A (2015) A highly elastic and rapidly crosslinkable elastin-like polypeptide-based hydrogel for biomedical applications. Adv Funct Mater 25(30):4814–4826PubMedPubMedCentralCrossRef Zhang YN, Avery RK, Vallmajo-Martin Q, Assmann A, Vegh A, Memic A, Olsen BD, Annabi N, Khademhosseini A (2015) A highly elastic and rapidly crosslinkable elastin-like polypeptide-based hydrogel for biomedical applications. Adv Funct Mater 25(30):4814–4826PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Elvin CM, Carr AG, Huson MG, Maxwell JM, Pearson RD, Vuocolo T, Liyou NE, Wong DC, Merritt DJ, Dixon NE (2005) Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437(7061):999–1002PubMedCrossRef Elvin CM, Carr AG, Huson MG, Maxwell JM, Pearson RD, Vuocolo T, Liyou NE, Wong DC, Merritt DJ, Dixon NE (2005) Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437(7061):999–1002PubMedCrossRef
105.
Zurück zum Zitat Gorb SN (1999) Serial elastic elements in the damselfly wing: mobile vein joints contain resilin. Naturwissenschaften 86(11):552–555PubMedCrossRef Gorb SN (1999) Serial elastic elements in the damselfly wing: mobile vein joints contain resilin. Naturwissenschaften 86(11):552–555PubMedCrossRef
106.
107.
Zurück zum Zitat Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K (2002) Elastic proteins: biological roles and mechanical properties. Philos Trans R Soc Lond B Biol Sci 357(1418):121–132PubMedPubMedCentralCrossRef Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K (2002) Elastic proteins: biological roles and mechanical properties. Philos Trans R Soc Lond B Biol Sci 357(1418):121–132PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Ardell DH, Andersen SO (2001) Tentative identification of a resilin gene in Drosophila melanogaster. Insect Biochem Mol Biol 31(10):965–970PubMedCrossRef Ardell DH, Andersen SO (2001) Tentative identification of a resilin gene in Drosophila melanogaster. Insect Biochem Mol Biol 31(10):965–970PubMedCrossRef
109.
Zurück zum Zitat Su RS, Kim Y, Liu JC (2014) Resilin: protein-based elastomeric biomaterials. Acta Biomater 10(4):1601–1611PubMedCrossRef Su RS, Kim Y, Liu JC (2014) Resilin: protein-based elastomeric biomaterials. Acta Biomater 10(4):1601–1611PubMedCrossRef
111.
Zurück zum Zitat Dutta NK, Truong MY, Mayavan S, Choudhury NR, Elvin CM, Kim M, Knott R, Nairn KM, Hill AJ (2011) A genetically engineered protein responsive to multiple stimuli. Angew Chem Int Ed 50(19):4428–4431CrossRef Dutta NK, Truong MY, Mayavan S, Choudhury NR, Elvin CM, Kim M, Knott R, Nairn KM, Hill AJ (2011) A genetically engineered protein responsive to multiple stimuli. Angew Chem Int Ed 50(19):4428–4431CrossRef
112.
Zurück zum Zitat Balu R, Whittaker J, Dutta NK, Elvin CM, Choudhury NR (2014) Multi-responsive biomaterials and nanobioconjugates from resilin-like protein polymers. J Mater Chem B 2(36):5936–5947PubMedCrossRef Balu R, Whittaker J, Dutta NK, Elvin CM, Choudhury NR (2014) Multi-responsive biomaterials and nanobioconjugates from resilin-like protein polymers. J Mater Chem B 2(36):5936–5947PubMedCrossRef
113.
Zurück zum Zitat Whittaker JL, Dutta NK, Knott R, McPhee G, Voelcker NH, Elvin C, Hill A, Choudhury NR (2015) Tunable thermoresponsiveness of resilin via coassembly with rigid biopolymers. Langmuir 31(32):8882–8891PubMedCrossRef Whittaker JL, Dutta NK, Knott R, McPhee G, Voelcker NH, Elvin C, Hill A, Choudhury NR (2015) Tunable thermoresponsiveness of resilin via coassembly with rigid biopolymers. Langmuir 31(32):8882–8891PubMedCrossRef
114.
Zurück zum Zitat Shavandi A, Silva TH, Bekhit AA, Bekhit AEA (2017) Keratin: dissolution, extraction and biomedical application. Biomater Sci 5(9):1699–1735PubMedCrossRef Shavandi A, Silva TH, Bekhit AA, Bekhit AEA (2017) Keratin: dissolution, extraction and biomedical application. Biomater Sci 5(9):1699–1735PubMedCrossRef
115.
Zurück zum Zitat Wang B, Yang W, McKittrick J, Meyers MA (2016) Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci 76:229–318CrossRef Wang B, Yang W, McKittrick J, Meyers MA (2016) Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci 76:229–318CrossRef
116.
Zurück zum Zitat McKittrick J, Chen PY, Bodde SG, Yang W, Novitskaya EE, Meyers MA (2012) The structure, functions, and mechanical properties of keratin. JOM 64(4):449–468CrossRef McKittrick J, Chen PY, Bodde SG, Yang W, Novitskaya EE, Meyers MA (2012) The structure, functions, and mechanical properties of keratin. JOM 64(4):449–468CrossRef
117.
Zurück zum Zitat Guo J, Pan S, Yin X, He Y-F, Li T, Wang R-M (2014) pH-sensitive keratin-based polymer hydrogel and its controllable drug-release behavior. J Appl Polym Sci 132(9) Guo J, Pan S, Yin X, He Y-F, Li T, Wang R-M (2014) pH-sensitive keratin-based polymer hydrogel and its controllable drug-release behavior. J Appl Polym Sci 132(9)
118.
Zurück zum Zitat Kikuchi G, Motokawa Y, Yoshida T, Hiraga K (2008) Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc Jpn Acad B Phys 84(7):246–263CrossRef Kikuchi G, Motokawa Y, Yoshida T, Hiraga K (2008) Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc Jpn Acad B Phys 84(7):246–263CrossRef
119.
Zurück zum Zitat Xu Y, Meng H, Ren J, Zeng A-P (2020) Formaldehyde formation in the glycine cleavage system and its use for an aldolase-based biosynthesis of 1,3-propanediol. J Biol Eng 14(1) Xu Y, Meng H, Ren J, Zeng A-P (2020) Formaldehyde formation in the glycine cleavage system and its use for an aldolase-based biosynthesis of 1,3-propanediol. J Biol Eng 14(1)
120.
Zurück zum Zitat Zhang H, Li Y, Nie J, Ren J, Zeng AP (2020) Structure-based dynamic analysis of the glycine cleavage system suggests key residues for control of a key reaction step. Commun Biol 3(1):756PubMedPubMedCentralCrossRef Zhang H, Li Y, Nie J, Ren J, Zeng AP (2020) Structure-based dynamic analysis of the glycine cleavage system suggests key residues for control of a key reaction step. Commun Biol 3(1):756PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Zhang X, Li M, Xu Y, Ren J, Zeng AP (2019) Quantitative study of H protein lipoylation of the glycine cleavage system and a strategy to increase its activity by co-expression of LplA. J Biol Eng 13:32PubMedPubMedCentralCrossRef Zhang X, Li M, Xu Y, Ren J, Zeng AP (2019) Quantitative study of H protein lipoylation of the glycine cleavage system and a strategy to increase its activity by co-expression of LplA. J Biol Eng 13:32PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Zhang X, Nie J, Zheng Y, Ren J, Zeng AP (2020) Activation and competition of lipoylation of H protein and its hydrolysis in a reaction cascade catalyzed by the multifunctional enzyme lipoate-protein ligase A. Biotechnol Bioeng 117(12):3677–3687 Zhang X, Nie J, Zheng Y, Ren J, Zeng AP (2020) Activation and competition of lipoylation of H protein and its hydrolysis in a reaction cascade catalyzed by the multifunctional enzyme lipoate-protein ligase A. Biotechnol Bioeng 117(12):3677–3687
123.
124.
Zurück zum Zitat Gao X, Sanderson SM, Dai Z, Reid MA, Cooper DE, Lu M, Richie Jr JP, Ciccarella A, Calcagnotto A, Mikhael PG, Mentch SJ, Liu J, Ables G, Kirsch DG, Hsu DS, Nichenametla SN, Locasale JW (2019) Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature 572(7769):397–401PubMedPubMedCentralCrossRef Gao X, Sanderson SM, Dai Z, Reid MA, Cooper DE, Lu M, Richie Jr JP, Ciccarella A, Calcagnotto A, Mikhael PG, Mentch SJ, Liu J, Ables G, Kirsch DG, Hsu DS, Nichenametla SN, Locasale JW (2019) Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature 572(7769):397–401PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME, Bhakoo KK, Jayapal SR, Nichane M, Yu Q, Ahmed DA, Tan C, Sing WP, Tam J, Thirugananam A, Noghabi MS, Pang YH, Ang HS, Mitchell W, Robson P, Kaldis P, Soo RA, Swarup S, Lim EH, Lim B (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148(1-2):259–272PubMedCrossRef Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME, Bhakoo KK, Jayapal SR, Nichane M, Yu Q, Ahmed DA, Tan C, Sing WP, Tam J, Thirugananam A, Noghabi MS, Pang YH, Ang HS, Mitchell W, Robson P, Kaldis P, Soo RA, Swarup S, Lim EH, Lim B (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148(1-2):259–272PubMedCrossRef
126.
Zurück zum Zitat Cronan JE (2016) Assembly of lipoic acid on its cognate enzymes: an extraordinary and essential biosynthetic pathway. Microbiol Mol Biol Rev 80(2):429–450PubMedPubMedCentralCrossRef Cronan JE (2016) Assembly of lipoic acid on its cognate enzymes: an extraordinary and essential biosynthetic pathway. Microbiol Mol Biol Rev 80(2):429–450PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Landschulz WH, Johnson PF, Mcknight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240(4860):1759–1764PubMedCrossRef Landschulz WH, Johnson PF, Mcknight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240(4860):1759–1764PubMedCrossRef
130.
Zurück zum Zitat Walshaw J, Woolfson DN (2001) Socket: a program for identifying and analysing coiled-coil motifs within protein structures. J Mol Biol 307(5):1427–1450PubMedCrossRef Walshaw J, Woolfson DN (2001) Socket: a program for identifying and analysing coiled-coil motifs within protein structures. J Mol Biol 307(5):1427–1450PubMedCrossRef
131.
Zurück zum Zitat Wu Y, Collier JH (2017) alpha-Helical coiled-coil peptide materials for biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(2) Wu Y, Collier JH (2017) alpha-Helical coiled-coil peptide materials for biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(2)
132.
Zurück zum Zitat Jing P, Rudra JS, Herr AB, Collier JH (2008) Self-assembling peptide-polymer hydrogels designed from the coiled coil region of fibrin. Biomacromolecules 9(9):2438–2446PubMedPubMedCentralCrossRef Jing P, Rudra JS, Herr AB, Collier JH (2008) Self-assembling peptide-polymer hydrogels designed from the coiled coil region of fibrin. Biomacromolecules 9(9):2438–2446PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Lv S, Cao Y, Li H (2012) Tandem modular protein-based hydrogels constructed using a novel two-component approach. Langmuir 28(4):2269–2274PubMedCrossRef Lv S, Cao Y, Li H (2012) Tandem modular protein-based hydrogels constructed using a novel two-component approach. Langmuir 28(4):2269–2274PubMedCrossRef
134.
Zurück zum Zitat Sun S-K, Wu J-C, Wang H, Zhou L, Zhang C, Cheng R, Kan D, Zhang X, Yu C (2019) Turning solid into gel for high-efficient persistent luminescence-sensitized photodynamic therapy. Biomaterials 218:119328PubMedCrossRef Sun S-K, Wu J-C, Wang H, Zhou L, Zhang C, Cheng R, Kan D, Zhang X, Yu C (2019) Turning solid into gel for high-efficient persistent luminescence-sensitized photodynamic therapy. Biomaterials 218:119328PubMedCrossRef
135.
Zurück zum Zitat Sun W, Duan T, Cao Y, Li H (2019) An injectable self-healing protein hydrogel with multiple dissipation modes and tunable dynamic response. Biomacromolecules 20(11):4199–4207PubMedCrossRef Sun W, Duan T, Cao Y, Li H (2019) An injectable self-healing protein hydrogel with multiple dissipation modes and tunable dynamic response. Biomacromolecules 20(11):4199–4207PubMedCrossRef
136.
Zurück zum Zitat Shu JY, Tan C, DeGrado WF, Xu T (2008) New design of helix bundle peptide-polymer conjugates. Biomacromolecules 9(8):2111–2117PubMedCrossRef Shu JY, Tan C, DeGrado WF, Xu T (2008) New design of helix bundle peptide-polymer conjugates. Biomacromolecules 9(8):2111–2117PubMedCrossRef
137.
Zurück zum Zitat Wang C, KopecÏek J, Stewart RJ (2001) Hybrid hydrogels cross-linked by genetically engineered coiled-coil block proteins. Biomacromolecules 2(3):912–920PubMedCrossRef Wang C, KopecÏek J, Stewart RJ (2001) Hybrid hydrogels cross-linked by genetically engineered coiled-coil block proteins. Biomacromolecules 2(3):912–920PubMedCrossRef
138.
Zurück zum Zitat Wang C, Stewart RJ, Kopecek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397(4):417–420PubMedCrossRef Wang C, Stewart RJ, Kopecek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397(4):417–420PubMedCrossRef
139.
Zurück zum Zitat Wu Y, Norberg PK, Reap EA, Congdon KL, Fries CN, Kelly SH, Sampson JH, Conticello VP, Collier JH (2017) A supramolecular vaccine platform based on alpha-helical peptide nanofibers. ACS Biomater Sci Eng 3(12):3128–3132PubMedPubMedCentralCrossRef Wu Y, Norberg PK, Reap EA, Congdon KL, Fries CN, Kelly SH, Sampson JH, Conticello VP, Collier JH (2017) A supramolecular vaccine platform based on alpha-helical peptide nanofibers. ACS Biomater Sci Eng 3(12):3128–3132PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA (1998) Reversible hydrogels from self-assembling artificial proteins. Science 281(5375):389–392PubMedCrossRef Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA (1998) Reversible hydrogels from self-assembling artificial proteins. Science 281(5375):389–392PubMedCrossRef
142.
Zurück zum Zitat Shen W, Zhang K, Kornfield JA, Tirrell DA (2006) Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat Mater 5(2):153–158PubMedCrossRef Shen W, Zhang K, Kornfield JA, Tirrell DA (2006) Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat Mater 5(2):153–158PubMedCrossRef
143.
144.
Zurück zum Zitat Hill LK, Meleties M, Katyal P, Xie X, Delgado-Fukushima E, Jihad T, Liu CF, O'Neill S, Tu RS, Renfrew PD, Bonneau R, Wadghiri YZ, Montclare JK (2019) Thermoresponsive protein-engineered coiled-coil hydrogel for sustained small molecule release. Biomacromolecules 20(9):3340–3351PubMedCrossRef Hill LK, Meleties M, Katyal P, Xie X, Delgado-Fukushima E, Jihad T, Liu CF, O'Neill S, Tu RS, Renfrew PD, Bonneau R, Wadghiri YZ, Montclare JK (2019) Thermoresponsive protein-engineered coiled-coil hydrogel for sustained small molecule release. Biomacromolecules 20(9):3340–3351PubMedCrossRef
145.
Zurück zum Zitat Olsen AJ, Katyal P, Haghpanah JS, Kubilius MB, Li R, Schnabel NL, O’Neill SC, Wang Y, Dai M, Singh N, Tu RS, Montclare JK (2018) Protein engineered triblock polymers composed of two SADs: enhanced mechanical properties and binding abilities. Biomacromolecules 19(5):1552–1561PubMedCrossRef Olsen AJ, Katyal P, Haghpanah JS, Kubilius MB, Li R, Schnabel NL, O’Neill SC, Wang Y, Dai M, Singh N, Tu RS, Montclare JK (2018) Protein engineered triblock polymers composed of two SADs: enhanced mechanical properties and binding abilities. Biomacromolecules 19(5):1552–1561PubMedCrossRef
146.
Zurück zum Zitat Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 90(8):3334–3338PubMedPubMedCentralCrossRef Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 90(8):3334–3338PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Zhang S, Lockshin C, Herbert A, Winter E, Rich A (1992) Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae. EMBO J 11(10):3787–3796PubMedPubMedCentralCrossRef Zhang S, Lockshin C, Herbert A, Winter E, Rich A (1992) Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae. EMBO J 11(10):3787–3796PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16(18):1385–1393PubMedCrossRef Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16(18):1385–1393PubMedCrossRef
149.
Zurück zum Zitat Gelain F, Bottai D, Vescovi A, Zhang S (2006) Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 1:e119PubMedPubMedCentralCrossRef Gelain F, Bottai D, Vescovi A, Zhang S (2006) Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 1:e119PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Koutsopoulos S, Zhang S (2013) Long-term three-dimensional neural tissue cultures in functionalized self-assembling peptide hydrogels, matrigel and collagen I. Acta Biomater 9(2):5162–5169PubMedCrossRef Koutsopoulos S, Zhang S (2013) Long-term three-dimensional neural tissue cultures in functionalized self-assembling peptide hydrogels, matrigel and collagen I. Acta Biomater 9(2):5162–5169PubMedCrossRef
151.
Zurück zum Zitat Koutsopoulos S, Zhang S (2012) Two-layered injectable self-assembling peptide scaffold hydrogels for long-term sustained release of human antibodies. J Control Release 160(3):451–458PubMedCrossRef Koutsopoulos S, Zhang S (2012) Two-layered injectable self-assembling peptide scaffold hydrogels for long-term sustained release of human antibodies. J Control Release 160(3):451–458PubMedCrossRef
153.
Zurück zum Zitat Zhang S (2020) Self-assembling peptides: from a discovery in a yeast protein to diverse uses and beyond. Protein Sci 29(11):2281–2303PubMedCrossRef Zhang S (2020) Self-assembling peptides: from a discovery in a yeast protein to diverse uses and beyond. Protein Sci 29(11):2281–2303PubMedCrossRef
154.
Zurück zum Zitat Pochan DJ, Schneider JP, Kretsinger J, Ozbas B, Rajagopal K, Haines L (2003) Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J Am Chem Soc 125(39):11802–11803PubMedCrossRef Pochan DJ, Schneider JP, Kretsinger J, Ozbas B, Rajagopal K, Haines L (2003) Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. J Am Chem Soc 125(39):11802–11803PubMedCrossRef
155.
Zurück zum Zitat Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124(50):15030–15037PubMedCrossRef Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124(50):15030–15037PubMedCrossRef
156.
Zurück zum Zitat Kretsinger JK, Haines LA, Ozbas B, Pochan DJ, Schneider JP (2005) Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces. Biomaterials 26(25):5177–5186PubMedCrossRef Kretsinger JK, Haines LA, Ozbas B, Pochan DJ, Schneider JP (2005) Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces. Biomaterials 26(25):5177–5186PubMedCrossRef
157.
Zurück zum Zitat Altunbas A, Lee SJ, Rajasekaran SA, Schneider JP, Pochan DJ (2011) Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 32(25):5906–5914PubMedPubMedCentralCrossRef Altunbas A, Lee SJ, Rajasekaran SA, Schneider JP, Pochan DJ (2011) Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 32(25):5906–5914PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Giano MC, Pochan DJ, Schneider JP (2011) Controlled biodegradation of self-assembling beta-hairpin peptide hydrogels by proteolysis with matrix metalloproteinase-13. Biomaterials 32(27):6471–6477PubMedPubMedCentralCrossRef Giano MC, Pochan DJ, Schneider JP (2011) Controlled biodegradation of self-assembling beta-hairpin peptide hydrogels by proteolysis with matrix metalloproteinase-13. Biomaterials 32(27):6471–6477PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Majumder P, Baxa U, Walsh STR, Schneider JP (2018) Design of a multicompartment hydrogel that facilitates time-resolved delivery of combination therapy and synergized killing of glioblastoma. Angew Chem Int Ed 57(46):15040–15044CrossRef Majumder P, Baxa U, Walsh STR, Schneider JP (2018) Design of a multicompartment hydrogel that facilitates time-resolved delivery of combination therapy and synergized killing of glioblastoma. Angew Chem Int Ed 57(46):15040–15044CrossRef
160.
Zurück zum Zitat Miller SE, Yamada Y, Patel N, Suarez E, Andrews C, Tau S, Luke BT, Cachau RE, Schneider JP (2019) Electrostatically driven Guanidinium interaction domains that control hydrogel-mediated protein delivery in vivo. ACS Cent Sci 5(11):1750–1759PubMedPubMedCentralCrossRef Miller SE, Yamada Y, Patel N, Suarez E, Andrews C, Tau S, Luke BT, Cachau RE, Schneider JP (2019) Electrostatically driven Guanidinium interaction domains that control hydrogel-mediated protein delivery in vivo. ACS Cent Sci 5(11):1750–1759PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Nagy-Smith K, Beltramo PJ, Moore E, Tycko R, Furst EM, Schneider JP (2017) Molecular, local, and network-level basis for the enhanced stiffness of hydrogel networks formed from coassembled racemic peptides: predictions from pauling and corey. ACS Cent Sci 3(6):586–597PubMedPubMedCentralCrossRef Nagy-Smith K, Beltramo PJ, Moore E, Tycko R, Furst EM, Schneider JP (2017) Molecular, local, and network-level basis for the enhanced stiffness of hydrogel networks formed from coassembled racemic peptides: predictions from pauling and corey. ACS Cent Sci 3(6):586–597PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Nagy-Smith K, Yamada Y, Schneider JP (2016) Protein release from highly charged peptide hydrogel networks. J Mater Chem B 4(11):1999–2007PubMedCrossRef Nagy-Smith K, Yamada Y, Schneider JP (2016) Protein release from highly charged peptide hydrogel networks. J Mater Chem B 4(11):1999–2007PubMedCrossRef
163.
Zurück zum Zitat Shi J, Fichman G, Schneider JP (2018) Enzymatic control of the conformational landscape of self-assembling peptides. Angew Chem Int Ed 57(35):11188–11192CrossRef Shi J, Fichman G, Schneider JP (2018) Enzymatic control of the conformational landscape of self-assembling peptides. Angew Chem Int Ed 57(35):11188–11192CrossRef
164.
Zurück zum Zitat Sinthuvanich C, Nagy-Smith KJ, Walsh STR, Schneider JP (2017) Triggered formation of anionic hydrogels from self-assembling acidic peptide amphiphiles. Macromolecules 50(15):5643–5651CrossRef Sinthuvanich C, Nagy-Smith KJ, Walsh STR, Schneider JP (2017) Triggered formation of anionic hydrogels from self-assembling acidic peptide amphiphiles. Macromolecules 50(15):5643–5651CrossRef
165.
Zurück zum Zitat Yamada Y, Patel NL, Kalen JD, Schneider JP (2019) Design of a peptide-based electronegative hydrogel for the direct encapsulation, 3D culturing, in vivo syringe-based delivery, and long-term tissue engraftment of cells. ACS Appl Mater Interfaces 11(38):34688–34697PubMedCrossRef Yamada Y, Patel NL, Kalen JD, Schneider JP (2019) Design of a peptide-based electronegative hydrogel for the direct encapsulation, 3D culturing, in vivo syringe-based delivery, and long-term tissue engraftment of cells. ACS Appl Mater Interfaces 11(38):34688–34697PubMedCrossRef
166.
Zurück zum Zitat Lopez-Silva TL, Leach DG, Azares A, Li IC, Woodside DG, Hartgerink JD (2020) Chemical functionality of multidomain peptide hydrogels governs early host immune response. Biomaterials 231:119667PubMedCrossRef Lopez-Silva TL, Leach DG, Azares A, Li IC, Woodside DG, Hartgerink JD (2020) Chemical functionality of multidomain peptide hydrogels governs early host immune response. Biomaterials 231:119667PubMedCrossRef
167.
Zurück zum Zitat Moore AN, Lopez Silva TL, Carrejo NC, Origel Marmolejo CA, Li IC, Hartgerink JD (2018) Nanofibrous peptide hydrogel elicits angiogenesis and neurogenesis without drugs, proteins, or cells. Biomaterials 161:154–163PubMedPubMedCentralCrossRef Moore AN, Lopez Silva TL, Carrejo NC, Origel Marmolejo CA, Li IC, Hartgerink JD (2018) Nanofibrous peptide hydrogel elicits angiogenesis and neurogenesis without drugs, proteins, or cells. Biomaterials 161:154–163PubMedPubMedCentralCrossRef
168.
Zurück zum Zitat Tian YF, Hudalla GA, Han H, Collier JH (2013) Controllably degradable β-sheet nanofibers and gels from self-assembling depsipeptides. Biomater Sci 1(10):1037CrossRef Tian YF, Hudalla GA, Han H, Collier JH (2013) Controllably degradable β-sheet nanofibers and gels from self-assembling depsipeptides. Biomater Sci 1(10):1037CrossRef
169.
170.
Zurück zum Zitat Roque AI, Soliakov A, Birch MA, Philips SR, Shah DS, Lakey JH (2014) Reversible non-stick behaviour of a bacterial protein polymer provides a tuneable molecular mimic for cell and tissue engineering. Adv Mater 26(17):2704–2709. 2616PubMedPubMedCentralCrossRef Roque AI, Soliakov A, Birch MA, Philips SR, Shah DS, Lakey JH (2014) Reversible non-stick behaviour of a bacterial protein polymer provides a tuneable molecular mimic for cell and tissue engineering. Adv Mater 26(17):2704–2709. 2616PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Soliakov A, Harris JR, Watkinson A, Lakey JH (2010) The structure of Yersinia pestis Caf1 polymer in free and adjuvant bound states. Vaccine 28(35):5746–5754PubMedCrossRef Soliakov A, Harris JR, Watkinson A, Lakey JH (2010) The structure of Yersinia pestis Caf1 polymer in free and adjuvant bound states. Vaccine 28(35):5746–5754PubMedCrossRef
172.
Zurück zum Zitat Dura G, Peters DT, Waller H, Yemm AI, Perkins ND, Ferreira AM, Crespo-Cuadrado M, Lakey JH, Fulton DA (2020) A thermally reformable protein polymer. Chem 6(11):3132–3151CrossRef Dura G, Peters DT, Waller H, Yemm AI, Perkins ND, Ferreira AM, Crespo-Cuadrado M, Lakey JH, Fulton DA (2020) A thermally reformable protein polymer. Chem 6(11):3132–3151CrossRef
173.
Zurück zum Zitat Miller J, Williamson ED, Lakey JH, Pearce MJ, Jones SM, Titball RW (1998) Macromolecular organisation of recombinant Yersinia pestis F1 antigen and the e¡ect of structure on immunogenicity. FEMS Immunol Med Microbiol 21(3):213–221PubMedCrossRef Miller J, Williamson ED, Lakey JH, Pearce MJ, Jones SM, Titball RW (1998) Macromolecular organisation of recombinant Yersinia pestis F1 antigen and the e¡ect of structure on immunogenicity. FEMS Immunol Med Microbiol 21(3):213–221PubMedCrossRef
174.
Zurück zum Zitat Chalton DA, Musson JA, Flick-Smith H, Walker N, McGregor A, Lamb HK, Williamson ED, Miller J, Robinson JH, Lakey JH (2006) Immunogenicity of a Yersinia pestis vaccine antigen monomerized by circular permutation. Infect Immun 74(12):6624–6631PubMedPubMedCentralCrossRef Chalton DA, Musson JA, Flick-Smith H, Walker N, McGregor A, Lamb HK, Williamson ED, Miller J, Robinson JH, Lakey JH (2006) Immunogenicity of a Yersinia pestis vaccine antigen monomerized by circular permutation. Infect Immun 74(12):6624–6631PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Ulusu Y, Dura G, Waller H, Benning MJ, Fulton DA, Lakey JH, Peters DT (2017) Thermal stability and rheological properties of the ‘non-stick’ Caf1 biomaterial. Biomed Mater 12(5):051001PubMedCrossRef Ulusu Y, Dura G, Waller H, Benning MJ, Fulton DA, Lakey JH, Peters DT (2017) Thermal stability and rheological properties of the ‘non-stick’ Caf1 biomaterial. Biomed Mater 12(5):051001PubMedCrossRef
176.
Zurück zum Zitat Dura G, Waller H, Gentile P, Lakey JH, Fulton DA (2018) Tuneable hydrogels of Caf1 protein fibers. Korean J Couns Psychother 93:88–95 Dura G, Waller H, Gentile P, Lakey JH, Fulton DA (2018) Tuneable hydrogels of Caf1 protein fibers. Korean J Couns Psychother 93:88–95
177.
Zurück zum Zitat Macias MJ, Gervais V, Civera C, Oschkinat H (2000) Structural analysis of WW domains and design of a WW prototype. Nat Struct Biol 7(5):375–379PubMedCrossRef Macias MJ, Gervais V, Civera C, Oschkinat H (2000) Structural analysis of WW domains and design of a WW prototype. Nat Struct Biol 7(5):375–379PubMedCrossRef
178.
Zurück zum Zitat Maciasa MJ, Wiesnera S, Sudol M (2002) WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett 513(1):30–37CrossRef Maciasa MJ, Wiesnera S, Sudol M (2002) WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett 513(1):30–37CrossRef
179.
Zurück zum Zitat Kang HJ, Coulibaly F, Clow F, Proft T, Baker EN (2007) Stabilizing isopeptide bonds revealed in gram-positive bacterial pilus structure. Science 318(5856):1625–1628PubMedCrossRef Kang HJ, Coulibaly F, Clow F, Proft T, Baker EN (2007) Stabilizing isopeptide bonds revealed in gram-positive bacterial pilus structure. Science 318(5856):1625–1628PubMedCrossRef
180.
Zurück zum Zitat Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, Moy VT, Howarth M (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109(12):E690–E697PubMedPubMedCentralCrossRef Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, Moy VT, Howarth M (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109(12):E690–E697PubMedPubMedCentralCrossRef
181.
Zurück zum Zitat Zakeri B, Howarth M (2010) Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting. J Am Chem Soc 132(13):4526–4527PubMedCrossRef Zakeri B, Howarth M (2010) Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting. J Am Chem Soc 132(13):4526–4527PubMedCrossRef
182.
Zurück zum Zitat Sun F, Zhang WB, Mahdavi A, Arnold FH, Tirrell DA (2014) Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry. Proc Natl Acad Sci U S A 111(31):11269–11274PubMedPubMedCentralCrossRef Sun F, Zhang WB, Mahdavi A, Arnold FH, Tirrell DA (2014) Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry. Proc Natl Acad Sci U S A 111(31):11269–11274PubMedPubMedCentralCrossRef
183.
Zurück zum Zitat Kou S, Yang Z, Luo J, Sun F (2017) Entirely recombinant protein-based hydrogels for selective heavy metal sequestration. Polym Chem 8(39):6158–6164CrossRef Kou S, Yang Z, Luo J, Sun F (2017) Entirely recombinant protein-based hydrogels for selective heavy metal sequestration. Polym Chem 8(39):6158–6164CrossRef
184.
Zurück zum Zitat Park J-E, Won J-I (2009) Thermal behaviors of elastin-like polypeptides (ELPs) according to their physical properties and environmental conditions. Biotechnol Bioproc E 14(5):662–667CrossRef Park J-E, Won J-I (2009) Thermal behaviors of elastin-like polypeptides (ELPs) according to their physical properties and environmental conditions. Biotechnol Bioproc E 14(5):662–667CrossRef
185.
Zurück zum Zitat Meyer DE, Chilkoti A (2004) Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Macromolecules 5(3):846–851 Meyer DE, Chilkoti A (2004) Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Macromolecules 5(3):846–851
186.
Zurück zum Zitat Urry DW, Luan CH, Parker TM, Gowda DC, Prasad KU, Reid MC, Safavy A (1991) Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity. J Am Chem Soc 113(11):4346–4348CrossRef Urry DW, Luan CH, Parker TM, Gowda DC, Prasad KU, Reid MC, Safavy A (1991) Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity. J Am Chem Soc 113(11):4346–4348CrossRef
187.
Zurück zum Zitat Qian Z-G, Zhou M-L, Song W-W, Xia X-X (2015) Dual thermosensitive hydrogels assembled from the conserved C-terminal domain of spider dragline silk. Biomacromolecules 16(11):3704–3711PubMedCrossRef Qian Z-G, Zhou M-L, Song W-W, Xia X-X (2015) Dual thermosensitive hydrogels assembled from the conserved C-terminal domain of spider dragline silk. Biomacromolecules 16(11):3704–3711PubMedCrossRef
188.
Zurück zum Zitat Lyu S, Fang J, Duan T, Fu L, Liu J, Li H (2017) Optically controlled reversible protein hydrogels based on photoswitchable fluorescent protein Dronpa. Chem Commun 53(100):13375–13378CrossRef Lyu S, Fang J, Duan T, Fu L, Liu J, Li H (2017) Optically controlled reversible protein hydrogels based on photoswitchable fluorescent protein Dronpa. Chem Commun 53(100):13375–13378CrossRef
189.
Zurück zum Zitat Wang R, Yang Z, Luo J, Hsing IM, Sun F (2017) B12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proc Natl Acad Sci U S A 114(23):5912–5917PubMedPubMedCentralCrossRef Wang R, Yang Z, Luo J, Hsing IM, Sun F (2017) B12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proc Natl Acad Sci U S A 114(23):5912–5917PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Horner M, Raute K, Hummel B, Madl J, Creusen G, Thomas OS, Christen EH, Hotz N, Gubeli RJ, Engesser R, Rebmann B, Lauer J, Rolauffs B, Timmer J, Schamel WWA, Pruszak J, Romer W, Zurbriggen MD, Friedrich C, Walther A, Minguet S, Sawarkar R, Weber W (2019) Phytochrome-based extracellular matrix with reversibly tunable mechanical properties. Adv Mater 31(12):e1806727PubMedCrossRef Horner M, Raute K, Hummel B, Madl J, Creusen G, Thomas OS, Christen EH, Hotz N, Gubeli RJ, Engesser R, Rebmann B, Lauer J, Rolauffs B, Timmer J, Schamel WWA, Pruszak J, Romer W, Zurbriggen MD, Friedrich C, Walther A, Minguet S, Sawarkar R, Weber W (2019) Phytochrome-based extracellular matrix with reversibly tunable mechanical properties. Adv Mater 31(12):e1806727PubMedCrossRef
191.
Zurück zum Zitat Zhang X, Dong C, Huang W, Wang H, Wang L, Ding D, Zhou H, Long J, Wang T, Yang Z (2015) Rational design of a photo-responsive UVR8-derived protein and a self-assembling peptide–protein conjugate for responsive hydrogel formation. Nanoscale 7(40):16666–16670PubMedCrossRef Zhang X, Dong C, Huang W, Wang H, Wang L, Ding D, Zhou H, Long J, Wang T, Yang Z (2015) Rational design of a photo-responsive UVR8-derived protein and a self-assembling peptide–protein conjugate for responsive hydrogel formation. Nanoscale 7(40):16666–16670PubMedCrossRef
192.
Zurück zum Zitat Liu L, Shadish JA, Arakawa CK, Shi K, Davis J, DeForest CA (2018) Cyclic stiffness modulation of cell-laden protein–polymer hydrogels in response to user-specified stimuli including light. Adv Biosys 2(12):1800240CrossRef Liu L, Shadish JA, Arakawa CK, Shi K, Davis J, DeForest CA (2018) Cyclic stiffness modulation of cell-laden protein–polymer hydrogels in response to user-specified stimuli including light. Adv Biosys 2(12):1800240CrossRef
193.
Zurück zum Zitat Xiang D, Wu X, Cao W, Xue B, Qin M, Cao Y, Wang W (2020) Hydrogels with tunable mechanical properties based on photocleavable proteins. Front Chem 8:7PubMedPubMedCentralCrossRef Xiang D, Wu X, Cao W, Xue B, Qin M, Cao Y, Wang W (2020) Hydrogels with tunable mechanical properties based on photocleavable proteins. Front Chem 8:7PubMedPubMedCentralCrossRef
194.
Zurück zum Zitat Dexter AF, Fletcher NL, Creasey RG, Filardo F, Boehm MW, Jack KS (2017) Fabrication and characterization of hydrogels formed from designer coiled-coil fibril-forming peptides. RSC Adv 7(44):27260–27271CrossRef Dexter AF, Fletcher NL, Creasey RG, Filardo F, Boehm MW, Jack KS (2017) Fabrication and characterization of hydrogels formed from designer coiled-coil fibril-forming peptides. RSC Adv 7(44):27260–27271CrossRef
195.
Zurück zum Zitat Ozbas B, Kretsinger J, Rajagopal K, Schneider JP, Pochan DJ (2004) Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 548(19):7331–7337CrossRef Ozbas B, Kretsinger J, Rajagopal K, Schneider JP, Pochan DJ (2004) Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 548(19):7331–7337CrossRef
196.
Zurück zum Zitat Rajagopal K, Lamm MS, Haines-Butterick LA, Pochan DJ, Schneider JP (2009) Tuning the pH responsiveness of β-hairpin peptide folding, self-assembly, and hydrogel material formation. Biomacromolecules 10(9):2619–2625PubMedCrossRef Rajagopal K, Lamm MS, Haines-Butterick LA, Pochan DJ, Schneider JP (2009) Tuning the pH responsiveness of β-hairpin peptide folding, self-assembly, and hydrogel material formation. Biomacromolecules 10(9):2619–2625PubMedCrossRef
197.
Zurück zum Zitat Lindsey S, Piatt JH, Worthington P, Sönmez C, Satheye S, Schneider JP, Pochan DJ, Langhans SA (2015) Beta hairpin peptide hydrogels as an injectable solid vehicle for neurotrophic growth factor delivery. Biomacromolecules 16(9):2672–2683PubMedPubMedCentralCrossRef Lindsey S, Piatt JH, Worthington P, Sönmez C, Satheye S, Schneider JP, Pochan DJ, Langhans SA (2015) Beta hairpin peptide hydrogels as an injectable solid vehicle for neurotrophic growth factor delivery. Biomacromolecules 16(9):2672–2683PubMedPubMedCentralCrossRef
198.
Zurück zum Zitat Ghosh G, Barman R, Sarkar J, Ghosh S (2019) pH-responsive biocompatible supramolecular peptide hydrogel. J Phys Chem B 123(27):5909–5915PubMedCrossRef Ghosh G, Barman R, Sarkar J, Ghosh S (2019) pH-responsive biocompatible supramolecular peptide hydrogel. J Phys Chem B 123(27):5909–5915PubMedCrossRef
199.
Zurück zum Zitat Raza F, Zhu Y, Chen L, You X, Zhang J, Khan A, Khan MW, Hasnat M, Zafar H, Wu J (2019) Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. Biomater Sci 7(5):2023–2036PubMedCrossRef Raza F, Zhu Y, Chen L, You X, Zhang J, Khan A, Khan MW, Hasnat M, Zafar H, Wu J (2019) Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. Biomater Sci 7(5):2023–2036PubMedCrossRef
200.
Zurück zum Zitat McDaniel JR, Radford DC, Chilkoti A (2013) A unified model for de novo design of elastin-like polypeptides with tunable inverse transition temperatures. Biomacromolecules 14(8):2866–2872PubMedPubMedCentralCrossRef McDaniel JR, Radford DC, Chilkoti A (2013) A unified model for de novo design of elastin-like polypeptides with tunable inverse transition temperatures. Biomacromolecules 14(8):2866–2872PubMedPubMedCentralCrossRef
201.
Zurück zum Zitat Li NK, Roberts S, Quiroz FG, Chilkoti A, Yingling YG (2018) Sequence directionality dramatically affects LCST behavior of elastin-like polypeptides. Biomacromolecules 19(7):2496–2505PubMedCrossRef Li NK, Roberts S, Quiroz FG, Chilkoti A, Yingling YG (2018) Sequence directionality dramatically affects LCST behavior of elastin-like polypeptides. Biomacromolecules 19(7):2496–2505PubMedCrossRef
202.
Zurück zum Zitat Bai S, Liu S, Zhang C, Xu W, Lu Q, Han H, Kaplan DL, Zhu H (2013) Controllable transition of silk fibroin nanostructures: an insight into in vitro silk self-assembly process. Acta Biomater 9(8):7806–7813PubMedCrossRef Bai S, Liu S, Zhang C, Xu W, Lu Q, Han H, Kaplan DL, Zhu H (2013) Controllable transition of silk fibroin nanostructures: an insight into in vitro silk self-assembly process. Acta Biomater 9(8):7806–7813PubMedCrossRef
203.
Zurück zum Zitat Motriuk-Smith D, Smith A, Hayashi CY, Lewis RV (2005) Analysis of the conserved N-terminal domains in major ampullate spider silk proteins. Biomacromolecules 6(6):3152–3159PubMedCrossRef Motriuk-Smith D, Smith A, Hayashi CY, Lewis RV (2005) Analysis of the conserved N-terminal domains in major ampullate spider silk proteins. Biomacromolecules 6(6):3152–3159PubMedCrossRef
204.
Zurück zum Zitat Nguyen AT, Huang QL, Yang Z, Lin N, Xu G, Liu XY (2015) Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance. Small 11(9-10):1039–1054PubMedCrossRef Nguyen AT, Huang QL, Yang Z, Lin N, Xu G, Liu XY (2015) Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance. Small 11(9-10):1039–1054PubMedCrossRef
205.
Zurück zum Zitat Gunasekar SK, Haghpanah JS, Montclare JK (2008) Assembly of bioinspired helical protein fibers. Polym Advan Technol 19(6):454–468CrossRef Gunasekar SK, Haghpanah JS, Montclare JK (2008) Assembly of bioinspired helical protein fibers. Polym Advan Technol 19(6):454–468CrossRef
206.
Zurück zum Zitat Bromley EH, Channon KJ, King PJ, Mahmoud ZN, Banwell EF, Butler MF, Crump MP, Dafforn TR, Hicks MR, Hirst JD (2010) Assembly pathway of a designed α-helical protein fiber. Biophys J 98(8):1668–1676PubMedPubMedCentralCrossRef Bromley EH, Channon KJ, King PJ, Mahmoud ZN, Banwell EF, Butler MF, Crump MP, Dafforn TR, Hicks MR, Hirst JD (2010) Assembly pathway of a designed α-helical protein fiber. Biophys J 98(8):1668–1676PubMedPubMedCentralCrossRef
207.
Zurück zum Zitat Hume J, Sun J, Jacquet R, Renfrew PD, Martin JA, Bonneau R, Gilchrist ML, Montclare JK (2014) Engineered coiled-coil protein microfibers. Biomacromolecules 15(10):3503–3510PubMedCrossRef Hume J, Sun J, Jacquet R, Renfrew PD, Martin JA, Bonneau R, Gilchrist ML, Montclare JK (2014) Engineered coiled-coil protein microfibers. Biomacromolecules 15(10):3503–3510PubMedCrossRef
208.
Zurück zum Zitat Rapp TL, DeForest CA (2020) Visible light-responsive dynamic biomaterials: going deeper and triggering more. Adv Healthc Mater 9(7):e1901553PubMedCrossRef Rapp TL, DeForest CA (2020) Visible light-responsive dynamic biomaterials: going deeper and triggering more. Adv Healthc Mater 9(7):e1901553PubMedCrossRef
209.
Zurück zum Zitat Zhang W, Lohman AW, Zhuravlova Y, Lu X, Wiens MD, Hoi H, Yaganoglu S, Mohr MA, Kitova EN, Klassen JS, Pantazis P, Thompson RJ, Campbell RE (2017) Optogenetic control with a photocleavable protein. PhoCl Nat Methods 14(4):391–394PubMedCrossRef Zhang W, Lohman AW, Zhuravlova Y, Lu X, Wiens MD, Hoi H, Yaganoglu S, Mohr MA, Kitova EN, Klassen JS, Pantazis P, Thompson RJ, Campbell RE (2017) Optogenetic control with a photocleavable protein. PhoCl Nat Methods 14(4):391–394PubMedCrossRef
210.
Zurück zum Zitat Shadish JA, Strange AC, DeForest CA (2019) Genetically encoded photocleavable linkers for patterned protein release from biomaterials. J Am Chem Soc 141(39):15619–15625PubMedCrossRef Shadish JA, Strange AC, DeForest CA (2019) Genetically encoded photocleavable linkers for patterned protein release from biomaterials. J Am Chem Soc 141(39):15619–15625PubMedCrossRef
211.
Zurück zum Zitat Hammer JA, Ruta A, West JL (2020) Using tools from optogenetics to create light-responsive biomaterials: LOVTRAP-PEG hydrogels for dynamic peptide immobilization. Ann Biomed Eng 48(7):1885–1894PubMedCrossRef Hammer JA, Ruta A, West JL (2020) Using tools from optogenetics to create light-responsive biomaterials: LOVTRAP-PEG hydrogels for dynamic peptide immobilization. Ann Biomed Eng 48(7):1885–1894PubMedCrossRef
212.
Zurück zum Zitat Zhao Y, Yokoi H, Tanaka M, Kinoshita T, Tan T (2008) Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide. Biomacromolecules 9(6):1511–1518PubMedCrossRef Zhao Y, Yokoi H, Tanaka M, Kinoshita T, Tan T (2008) Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide. Biomacromolecules 9(6):1511–1518PubMedCrossRef
213.
Zurück zum Zitat Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670PubMedCrossRef Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670PubMedCrossRef
214.
Zurück zum Zitat Fletcher NL, Lockett CV, Dexter AF (2011) A pH-responsive coiled-coil peptide hydrogel. Soft Matter 7(21):10210CrossRef Fletcher NL, Lockett CV, Dexter AF (2011) A pH-responsive coiled-coil peptide hydrogel. Soft Matter 7(21):10210CrossRef
Metadaten
Titel
Tunable Protein Hydrogels: Present State and Emerging Development
verfasst von
J. Nie
X. Zhang
W. Wang
J. Ren
A.-P. Zeng
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/10_2021_167

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.