Skip to main content

2019 | OriginalPaper | Buchkapitel

13. Tuning Surface Morphology of Polymer Films Through Bilayered Structures, Mechanical Forces, and External Stimuli

verfasst von : Ying Li, Shan Tang

Erschienen in: Wrinkled Polymer Surfaces

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surface wrinkles and many other instability patterns are ubiquitous in nature, such as fruits, vegetables, skins, and biological tissues. Understanding these instability patterns is of paramount importance in physics and mechanics fields, in particular, for their engineering and biology applications. In this chapter, we give an overview of how to tune the surface morphology of polymer thin films through bilayered structures, mechanical forces, and external stimuli through combined theoretical, computational, and experimental studies. First, we demonstrate how the compressibility of the substrate can influence the buckling and post-buckling behaviors of a perfectly bonded hard thin film. We find that Poisson’s ratio of the substrate cannot only shift the critical strain for the onset of buckling but also affect the buckling modes. Second, we explore the surface instability of bilayered hydrogel subjected to both compression and solvent absorption. Our results show that when the thickness of the upper layer is very large, surface wrinkles can exist without transforming into period doublings. The pre-absorption of the water can result in folds or unexpected hierarchical wrinkles, which can be realized in experiments through further efforts. Third, we discuss the transition of surface–interface creasing in bilayered hydrogels. The surface or interface crease of the bilayered hydrogels under swelling is found to be governed by both the modulus ratio and height ratio between the thin film and substrate. Last, we study the surface instability of monolayer graphene supported by a soft (polymer) substrate under equal-biaxial compression. Regardless of the interfacial adhesion strength between the graphene and substrate, herringbone wrinkles have always been observed due to their lowest energy status, compared with the checkerboard, hexagonal, triangular, and one-dimensional sinusoidal modes. These fundamental understandings about the surface morphology of polymer thin films and their bilayered structures will enable their future applications in engineering and biology fields, such as flexible electronics, biofouling, and interfacial adhesion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.A. Biot, Surface instability of rubber in compression. Appl. Sci. Res. Sect. A 12, 168–182 (1963)CrossRef M.A. Biot, Surface instability of rubber in compression. Appl. Sci. Res. Sect. A 12, 168–182 (1963)CrossRef
2.
Zurück zum Zitat A. Gent, I. Cho, Surface instabilities in compressed or bent rubber blocks. Rubber Chem. Technol. 72, 253–262 (1999)CrossRef A. Gent, I. Cho, Surface instabilities in compressed or bent rubber blocks. Rubber Chem. Technol. 72, 253–262 (1999)CrossRef
3.
Zurück zum Zitat A. Ghatak, A.L. Das, Kink instability of a highly deformable elastic cylinder. Phys. Rev. Lett. 99, 076101 (2007)CrossRef A. Ghatak, A.L. Das, Kink instability of a highly deformable elastic cylinder. Phys. Rev. Lett. 99, 076101 (2007)CrossRef
4.
Zurück zum Zitat W. Hong, X. Zhao, Z. Suo, Formation of creases on the surfaces of elastomers and gels. Appl. Phys. Lett. 95, 111901 (2009)CrossRef W. Hong, X. Zhao, Z. Suo, Formation of creases on the surfaces of elastomers and gels. Appl. Phys. Lett. 95, 111901 (2009)CrossRef
5.
Zurück zum Zitat E. Hohlfeld, L. Mahadevan, Unfolding the sulcus. Phys. Rev. Lett. 106, 105702 (2011)CrossRef E. Hohlfeld, L. Mahadevan, Unfolding the sulcus. Phys. Rev. Lett. 106, 105702 (2011)CrossRef
6.
Zurück zum Zitat Y. Cao, J.W. Hutchinson, From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society: 2011; p rspa20110384 Y. Cao, J.W. Hutchinson, From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society: 2011; p rspa20110384
7.
Zurück zum Zitat B. Li, Y.-P. Cao, X.-Q. Feng, H. Gao, Mechanics of morphological instabilities and surface wrinkling in soft materials: A review. Soft Matter 8, 5728–5745 (2012)CrossRef B. Li, Y.-P. Cao, X.-Q. Feng, H. Gao, Mechanics of morphological instabilities and surface wrinkling in soft materials: A review. Soft Matter 8, 5728–5745 (2012)CrossRef
8.
Zurück zum Zitat H. Mei, R. Huang, J.Y. Chung, C.M. Stafford, H.-H. Yu, Buckling modes of elastic thin films on elastic substrates. Appl. Phys. Lett. 90, 151902 (2007)CrossRef H. Mei, R. Huang, J.Y. Chung, C.M. Stafford, H.-H. Yu, Buckling modes of elastic thin films on elastic substrates. Appl. Phys. Lett. 90, 151902 (2007)CrossRef
9.
Zurück zum Zitat J.-Y. Sun, S. Xia, M.-W. Mon, K. H. Oh, K.-S. Kim, Folding wrinkles of a thin stiff layer on a soft substrate, in Proceedings of Royal Society A 2011, rspa20110567 J.-Y. Sun, S. Xia, M.-W. Mon, K. H. Oh, K.-S. Kim, Folding wrinkles of a thin stiff layer on a soft substrate, in Proceedings of Royal Society A 2011, rspa20110567
10.
Zurück zum Zitat J. Kim, J. Yoon, R.C. Hayward, Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels. Nat. Mater. 9, 159 (2010)CrossRef J. Kim, J. Yoon, R.C. Hayward, Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels. Nat. Mater. 9, 159 (2010)CrossRef
11.
Zurück zum Zitat P. Shivapooja, Q. Wang, B. Orihuela, D. Rittschof, G.P. López, X. Zhao, Bioinspired surfaces with dynamic topography for active control of biofouling. Adv. Mater. 25, 1430–1434 (2013)CrossRef P. Shivapooja, Q. Wang, B. Orihuela, D. Rittschof, G.P. López, X. Zhao, Bioinspired surfaces with dynamic topography for active control of biofouling. Adv. Mater. 25, 1430–1434 (2013)CrossRef
12.
Zurück zum Zitat E.P. Chan, J.M. Karp, R.S. Langer, A “self-pinning” adhesive based on responsive surface wrinkles. J. Polym. Sci. B Polym. Phys. 49, 40–44 (2011)CrossRef E.P. Chan, J.M. Karp, R.S. Langer, A “self-pinning” adhesive based on responsive surface wrinkles. J. Polym. Sci. B Polym. Phys. 49, 40–44 (2011)CrossRef
13.
Zurück zum Zitat K. Saha, J. Kim, E. Irwin, J. Yoon, F. Momin, V. Trujillo, D.V. Schaffer, K.E. Healy, R.C. Hayward, Surface creasing instability of soft polyacrylamide cell culture substrates. Biophys. J. 99, L94–L96 (2010)CrossRef K. Saha, J. Kim, E. Irwin, J. Yoon, F. Momin, V. Trujillo, D.V. Schaffer, K.E. Healy, R.C. Hayward, Surface creasing instability of soft polyacrylamide cell culture substrates. Biophys. J. 99, L94–L96 (2010)CrossRef
14.
Zurück zum Zitat S. Krylov, B.R. Ilic, D. Schreiber, S. Seretensky, H. Craighead, The pull-in behavior of electrostatically actuated bistable microstructures. J. Micromech. Microeng. 18, 055026 (2008)CrossRef S. Krylov, B.R. Ilic, D. Schreiber, S. Seretensky, H. Craighead, The pull-in behavior of electrostatically actuated bistable microstructures. J. Micromech. Microeng. 18, 055026 (2008)CrossRef
15.
Zurück zum Zitat Y. Li, X.-S. Wang, X.-K. Meng, Buckling behavior of metal film/substrate structure under pure bending. Appl. Phys. Lett. 92, 131902 (2008)CrossRef Y. Li, X.-S. Wang, X.-K. Meng, Buckling behavior of metal film/substrate structure under pure bending. Appl. Phys. Lett. 92, 131902 (2008)CrossRef
16.
Zurück zum Zitat Y. Li, X.-S. Wang, Q. Fan, Effects of elastic anisotropy on the surface stability of thin film/substrate system. Int. J. Eng. Sci. 46, 1325–1333 (2008)CrossRef Y. Li, X.-S. Wang, Q. Fan, Effects of elastic anisotropy on the surface stability of thin film/substrate system. Int. J. Eng. Sci. 46, 1325–1333 (2008)CrossRef
17.
Zurück zum Zitat V.V. Bolotin, Delaminations in composite structures: Its origin, buckling, growth and stability. Compos. Part B Eng. 27, 129–145 (1996)CrossRef V.V. Bolotin, Delaminations in composite structures: Its origin, buckling, growth and stability. Compos. Part B Eng. 27, 129–145 (1996)CrossRef
18.
Zurück zum Zitat Y. Hu, A. Hiltner, E. Baer, Buckling in elastomer/plastic/elastomer 3-layer films. Polym. Compos. 25, 653–661 (2004)CrossRef Y. Hu, A. Hiltner, E. Baer, Buckling in elastomer/plastic/elastomer 3-layer films. Polym. Compos. 25, 653–661 (2004)CrossRef
19.
Zurück zum Zitat Q. Wang, X. Zhao, A three-dimensional phase diagram of growth-induced surface instabilities. Sci. Rep. 5, 8887 (2015)CrossRef Q. Wang, X. Zhao, A three-dimensional phase diagram of growth-induced surface instabilities. Sci. Rep. 5, 8887 (2015)CrossRef
20.
Zurück zum Zitat Y. Cao, J.W. Hutchinson, Wrinkling phenomena in neo-Hookean film/substrate bilayers. J. Appl. Mech. 79, 031019 (2012)CrossRef Y. Cao, J.W. Hutchinson, Wrinkling phenomena in neo-Hookean film/substrate bilayers. J. Appl. Mech. 79, 031019 (2012)CrossRef
21.
Zurück zum Zitat Q. Wang, X. Zhao, Phase diagrams of instabilities in compressed film-substrate systems. J. Appl. Mech. 81, 051004 (2014)CrossRef Q. Wang, X. Zhao, Phase diagrams of instabilities in compressed film-substrate systems. J. Appl. Mech. 81, 051004 (2014)CrossRef
22.
Zurück zum Zitat L. Jin, Z. Suo, Smoothening creases on surfaces of strain-stiffening materials. J. Mech. Phys. Solids 74, 68–79 (2015)CrossRef L. Jin, Z. Suo, Smoothening creases on surfaces of strain-stiffening materials. J. Mech. Phys. Solids 74, 68–79 (2015)CrossRef
23.
Zurück zum Zitat J. Yin, Z. Cao, C. Li, I. Sheinman, X. Chen, Stress-driven buckling patterns in spheroidal core/shell structures. Proc Natl Acad Sci 105, 19132–19135 (2008)CrossRef J. Yin, Z. Cao, C. Li, I. Sheinman, X. Chen, Stress-driven buckling patterns in spheroidal core/shell structures. Proc Natl Acad Sci 105, 19132–19135 (2008)CrossRef
24.
Zurück zum Zitat J. Yin, X. Chen, I. Sheinman, Anisotropic buckling patterns in spheroidal film/substrate systems and their implications in some natural and biological systems. J. Mech. Phys. Solids 57, 1470–1484 (2009)CrossRef J. Yin, X. Chen, I. Sheinman, Anisotropic buckling patterns in spheroidal film/substrate systems and their implications in some natural and biological systems. J. Mech. Phys. Solids 57, 1470–1484 (2009)CrossRef
25.
Zurück zum Zitat B. Li, F. Jia, Y.-P. Cao, X.-Q. Feng, H. Gao, Surface wrinkling patterns on a core-shell soft sphere. Phys. Rev. Lett. 106, 234301 (2011)CrossRef B. Li, F. Jia, Y.-P. Cao, X.-Q. Feng, H. Gao, Surface wrinkling patterns on a core-shell soft sphere. Phys. Rev. Lett. 106, 234301 (2011)CrossRef
26.
Zurück zum Zitat P. Ciarletta, V. Balbi, E. Kuhl, Pattern selection in growing tubular tissues. Phys. Rev. Lett. 113, 248101 (2014)CrossRef P. Ciarletta, V. Balbi, E. Kuhl, Pattern selection in growing tubular tissues. Phys. Rev. Lett. 113, 248101 (2014)CrossRef
27.
Zurück zum Zitat D. Ambrosi, G. Ateshian, E. Arruda, S. Cowin, J. Dumais, A. Goriely, G.A. Holzapfel, J.D. Humphrey, R. Kemkemer, E. Kuhl, Perspectives on biological growth and remodeling. J. Mech. Phys. Solids 59, 863–883 (2011)CrossRef D. Ambrosi, G. Ateshian, E. Arruda, S. Cowin, J. Dumais, A. Goriely, G.A. Holzapfel, J.D. Humphrey, R. Kemkemer, E. Kuhl, Perspectives on biological growth and remodeling. J. Mech. Phys. Solids 59, 863–883 (2011)CrossRef
28.
Zurück zum Zitat S. Tang, Y. Li, Y. Yang, Z. Guo, The effect of mechanical-driven volumetric change on instability patterns of bilayered soft solids. Soft Matter 11, 7911–7919 (2015)CrossRef S. Tang, Y. Li, Y. Yang, Z. Guo, The effect of mechanical-driven volumetric change on instability patterns of bilayered soft solids. Soft Matter 11, 7911–7919 (2015)CrossRef
29.
Zurück zum Zitat Z. Zhou, Y. Li, T. Guo, X. Guo, S. Tang, Surface instability of bilayer hydrogel subjected to both compression and solvent absorption. Polymers 10, 624 (2018)CrossRef Z. Zhou, Y. Li, T. Guo, X. Guo, S. Tang, Surface instability of bilayer hydrogel subjected to both compression and solvent absorption. Polymers 10, 624 (2018)CrossRef
30.
Zurück zum Zitat Z. Zhou, Y. Li, W. Wong, T. Guo, S. Tang, J. Luo, Transition of surface–interface creasing in bilayer hydrogels. Soft Matter 13, 6011–6020 (2017)CrossRef Z. Zhou, Y. Li, W. Wong, T. Guo, S. Tang, J. Luo, Transition of surface–interface creasing in bilayer hydrogels. Soft Matter 13, 6011–6020 (2017)CrossRef
31.
Zurück zum Zitat Y. Li, Reversible wrinkles of monolayer graphene on a polymer substrate: Toward stretchable and flexible electronics. Soft Matter 12, 3202–3213 (2016)CrossRef Y. Li, Reversible wrinkles of monolayer graphene on a polymer substrate: Toward stretchable and flexible electronics. Soft Matter 12, 3202–3213 (2016)CrossRef
32.
Zurück zum Zitat X. Chen, J. Yin, Buckling patterns of thin films on curved compliant substrates with applications to morphogenesis and three-dimensional micro-fabrication. Soft Matter 6, 5667–5680 (2010)CrossRef X. Chen, J. Yin, Buckling patterns of thin films on curved compliant substrates with applications to morphogenesis and three-dimensional micro-fabrication. Soft Matter 6, 5667–5680 (2010)CrossRef
33.
Zurück zum Zitat M. Diab, T. Zhang, R. Zhao, H. Gao, K.-S. Kim, Ruga mechanics of creasing: From instantaneous to setback creases. Proc. R. Soc. A 469, 20120753 (2013)CrossRef M. Diab, T. Zhang, R. Zhao, H. Gao, K.-S. Kim, Ruga mechanics of creasing: From instantaneous to setback creases. Proc. R. Soc. A 469, 20120753 (2013)CrossRef
34.
Zurück zum Zitat Q. Wang, X. Zhao, Beyond wrinkles: Multimodal surface instabilities for multifunctional patterning. MRS Bull. 41, 115–122 (2016)CrossRef Q. Wang, X. Zhao, Beyond wrinkles: Multimodal surface instabilities for multifunctional patterning. MRS Bull. 41, 115–122 (2016)CrossRef
35.
Zurück zum Zitat S. Deng, V. Berry, Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 19, 197–212 (2016)CrossRef S. Deng, V. Berry, Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 19, 197–212 (2016)CrossRef
36.
Zurück zum Zitat G.N. Greaves, A. Greer, R. Lakes, T. Rouxel, Poisson’s ratio and modern materials. Nat. Mater. 10, 823 (2011)CrossRef G.N. Greaves, A. Greer, R. Lakes, T. Rouxel, Poisson’s ratio and modern materials. Nat. Mater. 10, 823 (2011)CrossRef
37.
Zurück zum Zitat S. Tang, Y. Li, W.K. Liu, X.X. Huang, Surface ripples of polymeric nanofibers under tension: The crucial role of Poisson’s ratio. Macromolecules 47, 6503–6514 (2014)CrossRef S. Tang, Y. Li, W.K. Liu, X.X. Huang, Surface ripples of polymeric nanofibers under tension: The crucial role of Poisson’s ratio. Macromolecules 47, 6503–6514 (2014)CrossRef
38.
Zurück zum Zitat G.W. Milton, Composite materials with Poisson’s ratios close to—1. J. Mech. Phys. Solids 40, 1105–1137 (1992)CrossRef G.W. Milton, Composite materials with Poisson’s ratios close to—1. J. Mech. Phys. Solids 40, 1105–1137 (1992)CrossRef
39.
Zurück zum Zitat J.N. Grima, A. Alderson, K. Evans, Auxetic behaviour from rotating rigid units. Phys. Status Solidi B 242, 561–575 (2005)CrossRef J.N. Grima, A. Alderson, K. Evans, Auxetic behaviour from rotating rigid units. Phys. Status Solidi B 242, 561–575 (2005)CrossRef
40.
Zurück zum Zitat S. Babaee, J. Shim, J.C. Weaver, E.R. Chen, N. Patel, K. Bertoldi, 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 25, 5044–5049 (2013)CrossRef S. Babaee, J. Shim, J.C. Weaver, E.R. Chen, N. Patel, K. Bertoldi, 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 25, 5044–5049 (2013)CrossRef
41.
Zurück zum Zitat S. Hirotsu, Softening of bulk modulus and negative Poisson’s ratio near the volume phase transition of polymer gels. J. Chem. Phys. 94, 3949–3957 (1991)CrossRef S. Hirotsu, Softening of bulk modulus and negative Poisson’s ratio near the volume phase transition of polymer gels. J. Chem. Phys. 94, 3949–3957 (1991)CrossRef
42.
Zurück zum Zitat E.M. Arruda, M.C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)CrossRef E.M. Arruda, M.C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)CrossRef
43.
Zurück zum Zitat W. Wong, T. Guo, Y. Zhang, L. Cheng, Surface instability maps for soft materials. Soft Matter 6, 5743–5750 (2010)CrossRef W. Wong, T. Guo, Y. Zhang, L. Cheng, Surface instability maps for soft materials. Soft Matter 6, 5743–5750 (2010)CrossRef
44.
Zurück zum Zitat S. Tang, Y. Yang, X.H. Peng, W.K. Liu, X.X. Huang, K. Elkhodary, A semi-numerical algorithm for instability of compressible multilayered structures. Comput. Mech. 56, 63–75 (2015)CrossRef S. Tang, Y. Yang, X.H. Peng, W.K. Liu, X.X. Huang, K. Elkhodary, A semi-numerical algorithm for instability of compressible multilayered structures. Comput. Mech. 56, 63–75 (2015)CrossRef
45.
Zurück zum Zitat F. Brau, H. Vandeparre, A. Sabbah, C. Poulard, A. Boudaoud, P. Damman, Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators. Nat. Phys. 7, 56 (2011)CrossRef F. Brau, H. Vandeparre, A. Sabbah, C. Poulard, A. Boudaoud, P. Damman, Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators. Nat. Phys. 7, 56 (2011)CrossRef
46.
Zurück zum Zitat A. Auguste, L. Jin, Z. Suo, R.C. Hayward, The role of substrate pre-stretch in post-wrinkling bifurcations. Soft Matter 10, 6520–6529 (2014)CrossRef A. Auguste, L. Jin, Z. Suo, R.C. Hayward, The role of substrate pre-stretch in post-wrinkling bifurcations. Soft Matter 10, 6520–6529 (2014)CrossRef
47.
Zurück zum Zitat Z.-C. Shao, Y. Zhao, W. Zhang, Y. Cao, X.-Q. Feng, Curvature induced hierarchical wrinkling patterns in soft bilayers. Soft Matter 12, 7977–7982 (2016)CrossRef Z.-C. Shao, Y. Zhao, W. Zhang, Y. Cao, X.-Q. Feng, Curvature induced hierarchical wrinkling patterns in soft bilayers. Soft Matter 12, 7977–7982 (2016)CrossRef
48.
Zurück zum Zitat W.-K. Lee, C.J. Engel, M.D. Huntington, J. Hu, T.W. Odom, Controlled three-dimensional hierarchical structuring by memory-based, sequential wrinkling. Nano Lett. 15, 5624–5629 (2015)CrossRef W.-K. Lee, C.J. Engel, M.D. Huntington, J. Hu, T.W. Odom, Controlled three-dimensional hierarchical structuring by memory-based, sequential wrinkling. Nano Lett. 15, 5624–5629 (2015)CrossRef
49.
Zurück zum Zitat Y. Wang, Q. Sun, J. Xiao, Simultaneous formation of multiscale hierarchical surface morphologies through sequential wrinkling and folding. Appl. Phys. Lett. 112, 081602 (2018)CrossRef Y. Wang, Q. Sun, J. Xiao, Simultaneous formation of multiscale hierarchical surface morphologies through sequential wrinkling and folding. Appl. Phys. Lett. 112, 081602 (2018)CrossRef
50.
Zurück zum Zitat L. Jin, D. Chen, R.C. Hayward, Z. Suo, Creases on the interface between two soft materials. Soft Matter 10, 303–311 (2014)CrossRef L. Jin, D. Chen, R.C. Hayward, Z. Suo, Creases on the interface between two soft materials. Soft Matter 10, 303–311 (2014)CrossRef
51.
Zurück zum Zitat B.B. Xu, Q. Liu, Z. Suo, R.C. Hayward, Reversible electrochemically triggered delamination blistering of hydrogel films on micropatterned electrodes. Adv. Funct. Mater. 26, 3218–3225 (2016)CrossRef B.B. Xu, Q. Liu, Z. Suo, R.C. Hayward, Reversible electrochemically triggered delamination blistering of hydrogel films on micropatterned electrodes. Adv. Funct. Mater. 26, 3218–3225 (2016)CrossRef
52.
Zurück zum Zitat B. Xu, R.C. Hayward, Low-voltage switching of crease patterns on hydrogel surfaces. Adv. Mater. 25, 5555–5559 (2013)CrossRef B. Xu, R.C. Hayward, Low-voltage switching of crease patterns on hydrogel surfaces. Adv. Mater. 25, 5555–5559 (2013)CrossRef
53.
Zurück zum Zitat S. Cai, D. Chen, Z. Suo, R.C. Hayward, Creasing instability of elastomer films. Soft Matter 8, 1301–1304 (2012)CrossRef S. Cai, D. Chen, Z. Suo, R.C. Hayward, Creasing instability of elastomer films. Soft Matter 8, 1301–1304 (2012)CrossRef
54.
Zurück zum Zitat J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M.J. Buehler, X. Zhao, Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321 (2013)CrossRef J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M.J. Buehler, X. Zhao, Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321 (2013)CrossRef
55.
Zurück zum Zitat T. Al-Mulla, Z. Qin, M.J. Buehler, Crumpling deformation regimes of monolayer graphene on substrate: A molecular mechanics study. J. Phys. Condens. Matter 27, 345401 (2015)CrossRef T. Al-Mulla, Z. Qin, M.J. Buehler, Crumpling deformation regimes of monolayer graphene on substrate: A molecular mechanics study. J. Phys. Condens. Matter 27, 345401 (2015)CrossRef
56.
Zurück zum Zitat K. Zhang, M. Arroyo, Adhesion and friction control localized folding in supported graphene. J. Appl. Phys. 113, 193501 (2013)CrossRef K. Zhang, M. Arroyo, Adhesion and friction control localized folding in supported graphene. J. Appl. Phys. 113, 193501 (2013)CrossRef
57.
Zurück zum Zitat K. Zhang, M. Arroyo, Understanding and strain-engineering wrinkle networks in supported graphene through simulations. J. Mech. Phys. Solids 72, 61–74 (2014)CrossRef K. Zhang, M. Arroyo, Understanding and strain-engineering wrinkle networks in supported graphene through simulations. J. Mech. Phys. Solids 72, 61–74 (2014)CrossRef
58.
Zurück zum Zitat X. Chen, J.W. Hutchinson, Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. 71, 597–603 (2004)CrossRef X. Chen, J.W. Hutchinson, Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. 71, 597–603 (2004)CrossRef
59.
Zurück zum Zitat S. Cai, D. Breid, A.J. Crosby, Z. Suo, J.W. Hutchinson, Periodic patterns and energy states of buckled films on compliant substrates. J. Mech. Phys. Solids 59, 1094–1114 (2011)CrossRef S. Cai, D. Breid, A.J. Crosby, Z. Suo, J.W. Hutchinson, Periodic patterns and energy states of buckled films on compliant substrates. J. Mech. Phys. Solids 59, 1094–1114 (2011)CrossRef
60.
Zurück zum Zitat J. Song, H. Jiang, W. Choi, D. Khang, Y. Huang, J. Rogers, An analytical study of two-dimensional buckling of thin films on compliant substrates. J. Appl. Phys. 103, 014303 (2008)CrossRef J. Song, H. Jiang, W. Choi, D. Khang, Y. Huang, J. Rogers, An analytical study of two-dimensional buckling of thin films on compliant substrates. J. Appl. Phys. 103, 014303 (2008)CrossRef
61.
Zurück zum Zitat W.M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y.Y. Huang, J.A. Rogers, Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett. 7, 1655–1663 (2007)CrossRef W.M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y.Y. Huang, J.A. Rogers, Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett. 7, 1655–1663 (2007)CrossRef
62.
Zurück zum Zitat S.-K. Lee, B.J. Kim, H. Jang, S.C. Yoon, C. Lee, B.H. Hong, J.A. Rogers, J.H. Cho, J.-H. Ahn, Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 11, 4642–4646 (2011)CrossRef S.-K. Lee, B.J. Kim, H. Jang, S.C. Yoon, C. Lee, B.H. Hong, J.A. Rogers, J.H. Cho, J.-H. Ahn, Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 11, 4642–4646 (2011)CrossRef
63.
Zurück zum Zitat Y. Wang, L. Wang, T. Yang, X. Li, X. Zang, M. Zhu, K. Wang, D. Wu, H. Zhu, Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24, 4666–4670 (2014)CrossRef Y. Wang, L. Wang, T. Yang, X. Li, X. Zang, M. Zhu, K. Wang, D. Wu, H. Zhu, Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24, 4666–4670 (2014)CrossRef
64.
Zurück zum Zitat J. Bai, Y. Huang, Fabrication and electrical properties of graphene nanoribbons. Mater. Sci. Eng. R Rep. 70, 341–353 (2010)CrossRef J. Bai, Y. Huang, Fabrication and electrical properties of graphene nanoribbons. Mater. Sci. Eng. R Rep. 70, 341–353 (2010)CrossRef
65.
Zurück zum Zitat S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D.M. Schnyer, D. Akinwande, N. Lu, Graphene electronic tattoo sensors. ACS Nano 11, 7634–7641 (2017)CrossRef S. Kabiri Ameri, R. Ho, H. Jang, L. Tao, Y. Wang, L. Wang, D.M. Schnyer, D. Akinwande, N. Lu, Graphene electronic tattoo sensors. ACS Nano 11, 7634–7641 (2017)CrossRef
66.
Zurück zum Zitat D. Song, A. Mahajan, E.B. Secor, M.C. Hersam, L.F. Francis, C.D. Frisbie, High-resolution transfer printing of graphene lines for fully printed, flexible electronics. ACS Nano 11, 7431–7439 (2017)CrossRef D. Song, A. Mahajan, E.B. Secor, M.C. Hersam, L.F. Francis, C.D. Frisbie, High-resolution transfer printing of graphene lines for fully printed, flexible electronics. ACS Nano 11, 7431–7439 (2017)CrossRef
67.
Zurück zum Zitat K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer, Nested self-similar wrinkling patterns in skins. Nat. Mater. 4, 293 (2005)CrossRef K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer, Nested self-similar wrinkling patterns in skins. Nat. Mater. 4, 293 (2005)CrossRef
68.
Zurück zum Zitat W.-K. Lee, W.-B. Jung, S.R. Nagel, T.W. Odom, Stretchable superhydrophobicity from monolithic, three-dimensional hierarchical wrinkles. Nano Lett. 16, 3774–3779 (2016)CrossRef W.-K. Lee, W.-B. Jung, S.R. Nagel, T.W. Odom, Stretchable superhydrophobicity from monolithic, three-dimensional hierarchical wrinkles. Nano Lett. 16, 3774–3779 (2016)CrossRef
69.
Zurück zum Zitat G. Lin, P. Chandrasekaran, C. Lv, Q. Zhang, Y. Tang, L. Han, J. Yin, Self-similar hierarchical wrinkles as a potential multifunctional smart window with simultaneously tunable transparency, structural color, and droplet transport. ACS Appl. Mater. Interfaces 9, 26510–26517 (2017)CrossRef G. Lin, P. Chandrasekaran, C. Lv, Q. Zhang, Y. Tang, L. Han, J. Yin, Self-similar hierarchical wrinkles as a potential multifunctional smart window with simultaneously tunable transparency, structural color, and droplet transport. ACS Appl. Mater. Interfaces 9, 26510–26517 (2017)CrossRef
70.
Zurück zum Zitat J. Yin, C. Lu, Hierarchical surface wrinkles directed by wrinkled templates. Soft Matter 8, 6528–6534 (2012)CrossRef J. Yin, C. Lu, Hierarchical surface wrinkles directed by wrinkled templates. Soft Matter 8, 6528–6534 (2012)CrossRef
71.
Zurück zum Zitat S. Budday, E. Kuhl, J.W. Hutchinson, Period-doubling and period-tripling in growing bilayered systems. Philos. Mag. 95, 3208–3224 (2015)CrossRef S. Budday, E. Kuhl, J.W. Hutchinson, Period-doubling and period-tripling in growing bilayered systems. Philos. Mag. 95, 3208–3224 (2015)CrossRef
72.
Zurück zum Zitat R. Zhao, T. Zhang, M. Diab, H. Gao, K.-S. Kim, The primary bilayer ruga-phase diagram I: Localizations in ruga evolution. Extreme Mech. Lett. 4, 76–82 (2015)CrossRef R. Zhao, T. Zhang, M. Diab, H. Gao, K.-S. Kim, The primary bilayer ruga-phase diagram I: Localizations in ruga evolution. Extreme Mech. Lett. 4, 76–82 (2015)CrossRef
73.
Zurück zum Zitat A. Haji Hosseinloo, K. Turitsyn, Energy harvesting via wrinkling instabilities. Appl. Phys. Lett. 110, 013901 (2017)CrossRef A. Haji Hosseinloo, K. Turitsyn, Energy harvesting via wrinkling instabilities. Appl. Phys. Lett. 110, 013901 (2017)CrossRef
74.
Zurück zum Zitat T. Tallinen, J.Y. Chung, J.S. Biggins, L. Mahadevan, Gyrification from constrained cortical expansion. Proc. Natl. Acad. Sci. 111, 12667–12672 (2014)CrossRef T. Tallinen, J.Y. Chung, J.S. Biggins, L. Mahadevan, Gyrification from constrained cortical expansion. Proc. Natl. Acad. Sci. 111, 12667–12672 (2014)CrossRef
75.
Zurück zum Zitat Q.-D. To, Stress concentration and surface instability of anisotropic solids with slightly wavy boundary. Int. J. Solids Struct. 49, 151–160 (2012)CrossRef Q.-D. To, Stress concentration and surface instability of anisotropic solids with slightly wavy boundary. Int. J. Solids Struct. 49, 151–160 (2012)CrossRef
76.
Zurück zum Zitat A.E. Shyer, T. Tallinen, N.L. Nerurkar, Z. Wei, E.S. Gil, D.L. Kaplan, C.J. Tabin, L. Mahadevan, Villification: How the gut gets its villi. Science 342, 212–218 (2013)CrossRef A.E. Shyer, T. Tallinen, N.L. Nerurkar, Z. Wei, E.S. Gil, D.L. Kaplan, C.J. Tabin, L. Mahadevan, Villification: How the gut gets its villi. Science 342, 212–218 (2013)CrossRef
77.
Zurück zum Zitat M.B. Amar, F. Jia, Anisotropic growth shapes intestinal tissues during embryogenesis. Proc. Natl. Acad. Sci. 110, 10525–10530 (2013)CrossRef M.B. Amar, F. Jia, Anisotropic growth shapes intestinal tissues during embryogenesis. Proc. Natl. Acad. Sci. 110, 10525–10530 (2013)CrossRef
78.
Zurück zum Zitat G.M. Grason, B. Davidovitch, Universal collapse of stress and wrinkle-to-scar transition in spherically confined crystalline sheets. Proc. Natl. Acad. Sci. 110, 12893–12898 (2013)CrossRef G.M. Grason, B. Davidovitch, Universal collapse of stress and wrinkle-to-scar transition in spherically confined crystalline sheets. Proc. Natl. Acad. Sci. 110, 12893–12898 (2013)CrossRef
79.
Zurück zum Zitat H. Qiu, Y. Li, T.F. Guo, X. Guo, S. Tang, Deformation and pattern transformation of porous soft solids under biaxial loading: Experiments and simulations. Extreme Mech. Lett. 20, 81–90 (2018)CrossRef H. Qiu, Y. Li, T.F. Guo, X. Guo, S. Tang, Deformation and pattern transformation of porous soft solids under biaxial loading: Experiments and simulations. Extreme Mech. Lett. 20, 81–90 (2018)CrossRef
80.
Zurück zum Zitat Z. Li, Z. Zhou, Y. Li, S. Tang, Effect of cyclic loading on surface instability of silicone rubber under compression. Polymers 9, 148 (2017)CrossRef Z. Li, Z. Zhou, Y. Li, S. Tang, Effect of cyclic loading on surface instability of silicone rubber under compression. Polymers 9, 148 (2017)CrossRef
81.
Zurück zum Zitat S. Tang, Y. Li, W.K. Liu, N. Hu, X.H. Peng, Z. Guo, Tensile stress-driven surface wrinkles on cylindrical core–shell soft solids. J. Appl. Mech. 82, 121002 (2015)CrossRef S. Tang, Y. Li, W.K. Liu, N. Hu, X.H. Peng, Z. Guo, Tensile stress-driven surface wrinkles on cylindrical core–shell soft solids. J. Appl. Mech. 82, 121002 (2015)CrossRef
82.
Zurück zum Zitat D. Peng, Z. Zhou, Y. Liu, T. Guo, Y. Li, S. Tang, Computational modeling of the effect of sulci during tumor growth and cerebral edema. J. Nanomater. 2016, 3038790 (2016)CrossRef D. Peng, Z. Zhou, Y. Liu, T. Guo, Y. Li, S. Tang, Computational modeling of the effect of sulci during tumor growth and cerebral edema. J. Nanomater. 2016, 3038790 (2016)CrossRef
Metadaten
Titel
Tuning Surface Morphology of Polymer Films Through Bilayered Structures, Mechanical Forces, and External Stimuli
verfasst von
Ying Li
Shan Tang
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-05123-5_13

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.