Skip to main content

2018 | OriginalPaper | Buchkapitel

Uncovering Dynamic Functional Connectivity of Parkinson’s Disease Using Topological Features and Sparse Group Lasso

verfasst von : Kin Ming Puk, Wei Xiang, Shouyi Wang, Cao (Danica) Xiao, W. A. Chaovalitwongse, Tara Madhyastha, Thomas Grabowski

Erschienen in: Brain Informatics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neuro-degenerative diseases such as Parkinson’s Disease (PD) are clinically found to cause alternations and failures in brain connectivity. In this work, a new classification framework using dynamic functional connectivity and topological features is proposed, and it is shown that such framework can give better insights over discriminative difference of the disease itself. After utilizing sparse group lasso with anatomically labeled resting-state fMRI signal, both discriminating brain regions and voxels within can be identified easily. To give an overview of the effectiveness of such framework, the classification performance with the network features extracted on dynamic functional network is quantitatively evaluated. Experimental results show that either single feature of clustering coefficient or combined feature group of characteristic path length, diameter, eccentricity and radius perform well in classifying PD, and as a result the identified feature can lead to better interpretation for clinical purposes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
1 TR represents the time between two successive data points in the time-series signal.
 
2
Mathematically, \(t_i=\frac{1}{2}\sum _{j,h\in N}a_{ij}a_{ih}a_{jh}\), where \(a_{ij}\) is the connection status between i and j: \(a_{ij} = 1\) when link (ij) exists (when i and j are neighbors); \(a_{ij} = 0\) otherwise (\(a_{ii} = 0\) for all i).
 
3
From the formula, C is only defined when \(k_i\) is larger than 1.
 
4
Mathematically, \(t_i^w = \frac{1}{2}\sum _{j,h\in N}(w_{ij}w_{ih}w_{jh})^{1/3}\), where \(w_{ij}\) is the connection weight between nodes i and j.
 
Literatur
1.
Zurück zum Zitat Aftabuddin, M., Kundu, S.: AMINONET-a tool to construct and visualize amino acid networks, and to calculate topological parameters. J. Appl. Crystallogr. 43(2), 367–369 (2010)CrossRef Aftabuddin, M., Kundu, S.: AMINONET-a tool to construct and visualize amino acid networks, and to calculate topological parameters. J. Appl. Crystallogr. 43(2), 367–369 (2010)CrossRef
2.
Zurück zum Zitat Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)MathSciNetCrossRef Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)MathSciNetCrossRef
3.
Zurück zum Zitat Börner, K., Sanyal, S., Vespignani, A.: Network science. Ann. Rev. Inf. Sci. Technol. 41(1), 537–607 (2007)CrossRef Börner, K., Sanyal, S., Vespignani, A.: Network science. Ann. Rev. Inf. Sci. Technol. 41(1), 537–607 (2007)CrossRef
4.
Zurück zum Zitat Byun, H.Y., Lu, J.J., Mayberg, H.S., Günay, C.: Classification of resting state fMRI datasets using dynamic network clusters. In: Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence (2014) Byun, H.Y., Lu, J.J., Mayberg, H.S., Günay, C.: Classification of resting state fMRI datasets using dynamic network clusters. In: Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)
5.
Zurück zum Zitat Chai, B., Walther, D., Beck, D., Fei-Fei, L.: Exploring functional connectivities of the human brain using multivariate information analysis. In: Advances in Neural Information Processing Systems, pp. 270–278 (2009) Chai, B., Walther, D., Beck, D., Fei-Fei, L.: Exploring functional connectivities of the human brain using multivariate information analysis. In: Advances in Neural Information Processing Systems, pp. 270–278 (2009)
6.
Zurück zum Zitat Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATH Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATH
7.
Zurück zum Zitat Estrada, E.: The Structure of Complex Networks: Theory and Applications. Oxford University Press, New York (2012)MATH Estrada, E.: The Structure of Complex Networks: Theory and Applications. Oxford University Press, New York (2012)MATH
8.
Zurück zum Zitat Matthew Hutchison, R., et al.: Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013)CrossRef Matthew Hutchison, R., et al.: Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013)CrossRef
9.
Zurück zum Zitat Ioannides, A.A.: Dynamic functional connectivity. Curr. Opin. Neurobiol. 17(2), 161–170 (2007)CrossRef Ioannides, A.A.: Dynamic functional connectivity. Curr. Opin. Neurobiol. 17(2), 161–170 (2007)CrossRef
10.
Zurück zum Zitat Lancaster, J.L., et al.: Automated talairach atlas labels for functional brain mapping. Hum. Brain Mapp. 10(3), 120–131 (2000)CrossRef Lancaster, J.L., et al.: Automated talairach atlas labels for functional brain mapping. Hum. Brain Mapp. 10(3), 120–131 (2000)CrossRef
11.
Zurück zum Zitat Lancaster, J.L., et al.: Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum. Brain Mapp. 5(4), 238 (1997)CrossRef Lancaster, J.L., et al.: Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum. Brain Mapp. 5(4), 238 (1997)CrossRef
12.
Zurück zum Zitat Liu, J., Ji, S., Ye, J., et al.: SLEP: sparse learning with efficient projections. Arizona State Univ. 6, 491 (2009) Liu, J., Ji, S., Ye, J., et al.: SLEP: sparse learning with efficient projections. Arizona State Univ. 6, 491 (2009)
13.
Zurück zum Zitat Loewe, K., Grueschow, M., Stoppel, C.M., Kruse, R., Borgelt, C.: Fast construction of voxel-level functional connectivity graphs. BMC Neurosci. 15(1), 1 (2014)CrossRef Loewe, K., Grueschow, M., Stoppel, C.M., Kruse, R., Borgelt, C.: Fast construction of voxel-level functional connectivity graphs. BMC Neurosci. 15(1), 1 (2014)CrossRef
14.
Zurück zum Zitat Duncan Luce, R., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)MathSciNetCrossRef Duncan Luce, R., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)MathSciNetCrossRef
15.
Zurück zum Zitat Madhyastha, T.M., Askren, M.K., Boord, P., Grabowski, T.J.: Dynamic connectivity at rest predicts attention task performance. Brain Connectivity 5(1), 45–59 (2015)CrossRef Madhyastha, T.M., Askren, M.K., Boord, P., Grabowski, T.J.: Dynamic connectivity at rest predicts attention task performance. Brain Connectivity 5(1), 45–59 (2015)CrossRef
16.
Zurück zum Zitat Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10(9), 424–430 (2006)CrossRef Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10(9), 424–430 (2006)CrossRef
17.
Zurück zum Zitat Onnela, J.-P., Saramäki, J., Kertész, J., Kaski, K.: Intensity and coherence of motifs in weighted complex networks. Phys. Rev. E 71(6), 065103 (2005)CrossRef Onnela, J.-P., Saramäki, J., Kertész, J., Kaski, K.: Intensity and coherence of motifs in weighted complex networks. Phys. Rev. E 71(6), 065103 (2005)CrossRef
18.
Zurück zum Zitat Opsahl, T.: Triadic closure in two-mode networks: redefining the global and local clustering coefficients. Soc. Netw. 35(2), 159–167 (2013)CrossRef Opsahl, T.: Triadic closure in two-mode networks: redefining the global and local clustering coefficients. Soc. Netw. 35(2), 159–167 (2013)CrossRef
19.
Zurück zum Zitat Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009)CrossRef Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009)CrossRef
20.
Zurück zum Zitat Papo, D., Buldú, J.M., Boccaletti, S., Bullmore, E.T.: Complex network theory and the brain. Phil. Trans. R. Soc. B 369(1653), 20130520 (2014)CrossRef Papo, D., Buldú, J.M., Boccaletti, S., Bullmore, E.T.: Complex network theory and the brain. Phil. Trans. R. Soc. B 369(1653), 20130520 (2014)CrossRef
21.
Zurück zum Zitat Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Patt. Anal. Mach. Intell. 27(8), 1226–1238 (2005)CrossRef Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Patt. Anal. Mach. Intell. 27(8), 1226–1238 (2005)CrossRef
22.
Zurück zum Zitat Power, J.D., et al.: Functional network organization of the human brain. Neuron 72(4), 665–678 (2011)CrossRef Power, J.D., et al.: Functional network organization of the human brain. Neuron 72(4), 665–678 (2011)CrossRef
23.
Zurück zum Zitat Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P., Van De Ville, D.: Decoding brain states from fmri connectivity graphs. Neuroimage 56(2), 616–626 (2011)CrossRef Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P., Van De Ville, D.: Decoding brain states from fmri connectivity graphs. Neuroimage 56(2), 616–626 (2011)CrossRef
24.
Zurück zum Zitat Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)CrossRef Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)CrossRef
25.
Zurück zum Zitat Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)CrossRef Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)CrossRef
26.
Zurück zum Zitat Telesford, Q.K., Joyce, K.E., Hayasaka, S., Burdette, J.H., Laurienti, P.J.: The ubiquity of small-world networks. Brain Connectivity 1(5), 367–375 (2011)CrossRef Telesford, Q.K., Joyce, K.E., Hayasaka, S., Burdette, J.H., Laurienti, P.J.: The ubiquity of small-world networks. Brain Connectivity 1(5), 367–375 (2011)CrossRef
27.
Zurück zum Zitat Van Wijk, B.C.M., Stam, C.J., Daffertshofer, A.: Comparing brain networks of different size and connectivity density using graph theory. PloS ONE 5(10), e13701 (2010)CrossRef Van Wijk, B.C.M., Stam, C.J., Daffertshofer, A.: Comparing brain networks of different size and connectivity density using graph theory. PloS ONE 5(10), e13701 (2010)CrossRef
28.
Zurück zum Zitat Varoquaux, G., Gramfort, A., Poline, J.-B., Thirion, B.: Brain covariance selection: better individual functional connectivity models using population prior. In: Advances in Neural Information Processing Systems, pp. 2334–2342 (2010) Varoquaux, G., Gramfort, A., Poline, J.-B., Thirion, B.: Brain covariance selection: better individual functional connectivity models using population prior. In: Advances in Neural Information Processing Systems, pp. 2334–2342 (2010)
29.
Zurück zum Zitat Wang, Z., Alahmadi, A., Zhu, D., Li, T.: Brain functional connectivity analysis using mutual information. In: 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 542–546. IEEE (2015) Wang, Z., Alahmadi, A., Zhu, D., Li, T.: Brain functional connectivity analysis using mutual information. In: 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 542–546. IEEE (2015)
30.
Zurück zum Zitat Watts, D.J., Strogatz, S.H.: Collective dynamics of śmall-worldńetworks. Nature 393(6684), 440–442 (1998)CrossRef Watts, D.J., Strogatz, S.H.: Collective dynamics of śmall-worldńetworks. Nature 393(6684), 440–442 (1998)CrossRef
Metadaten
Titel
Uncovering Dynamic Functional Connectivity of Parkinson’s Disease Using Topological Features and Sparse Group Lasso
verfasst von
Kin Ming Puk
Wei Xiang
Shouyi Wang
Cao (Danica) Xiao
W. A. Chaovalitwongse
Tara Madhyastha
Thomas Grabowski
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-05587-5_40