Skip to main content
Erschienen in: Journal of Materials Science 11/2017

21.02.2017 | Original Paper

Understanding the effects of Poisson’s ratio on the shear band behavior and plasticity of metallic glasses

verfasst von: G. N. Yang, B. A. Sun, S. Q. Chen, J. L. Gu, Y. Shao, H. Wang, K. F. Yao

Erschienen in: Journal of Materials Science | Ausgabe 11/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In metallic glasses, a high Poisson’s ratio often corresponds to a large plasticity and ductility. Yet the physics underpinning such a connection is still poorly understood. Here through finite element simulations, we reveal that a high Poisson’s ratio could promote the inhomogeneous stress distribution in metallic glasses. The inhomogeneous stress field could cause earlier nucleation and easier arrest of shear bands, and therefore better plasticity. Experimental results also show a trend of decreasing shear limit with Poisson’s ratio. These findings suggest that the stress inhomogeneity might be a key to understand the effects of Poisson’s ratio and loading condition on the plastic deformation behaviors of metallic glasses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sha ZD, He LC, Xu S et al (2014) Effect of aspect ratio on the mechanical properties of metallic glasses. Scr Mater 93:36–39CrossRef Sha ZD, He LC, Xu S et al (2014) Effect of aspect ratio on the mechanical properties of metallic glasses. Scr Mater 93:36–39CrossRef
2.
Zurück zum Zitat Mondal K, Hono K (2009) Geometry constrained plasticity of bulk metallic glass. Mater Trans 50:152–157CrossRef Mondal K, Hono K (2009) Geometry constrained plasticity of bulk metallic glass. Mater Trans 50:152–157CrossRef
3.
Zurück zum Zitat Schuh CA, Hufnagel TC, Ramamurty U (2007) Mechanical behavior of amorphous alloys. Acta Mater 55:4067–4109CrossRef Schuh CA, Hufnagel TC, Ramamurty U (2007) Mechanical behavior of amorphous alloys. Acta Mater 55:4067–4109CrossRef
4.
Zurück zum Zitat Wu FF, Zheng W, Wu SD, Zhang ZF, Shen J (2011) Shear stability of metallic glasses. Int J Plast 27:560–575CrossRef Wu FF, Zheng W, Wu SD, Zhang ZF, Shen J (2011) Shear stability of metallic glasses. Int J Plast 27:560–575CrossRef
5.
Zurück zum Zitat Yoo BG, Kim JY, Kim YJ et al (2012) Increased time-dependent room temperature plasticity in metallic glass nanopillars and its size-dependency. Int J Plast 37:108–118CrossRef Yoo BG, Kim JY, Kim YJ et al (2012) Increased time-dependent room temperature plasticity in metallic glass nanopillars and its size-dependency. Int J Plast 37:108–118CrossRef
6.
Zurück zum Zitat Jang DC, Gross CT, Greer JR (2011) Effects of size on the strength and deformation mechanism in Zr-based metallic glasses. Int J Plast 27:858–867CrossRef Jang DC, Gross CT, Greer JR (2011) Effects of size on the strength and deformation mechanism in Zr-based metallic glasses. Int J Plast 27:858–867CrossRef
8.
Zurück zum Zitat Nakayama KS, Yokoyama Y, Ono T et al (2010) Controlled formation and mechanical characterization of metallic glassy nanowires. Adv Mater 22:872–875CrossRef Nakayama KS, Yokoyama Y, Ono T et al (2010) Controlled formation and mechanical characterization of metallic glassy nanowires. Adv Mater 22:872–875CrossRef
9.
Zurück zum Zitat Volkert CA, Donohue A, Spaepen F (2008) Effect of sample size on deformation in amorphous metals. J Appl Phys 103:083539CrossRef Volkert CA, Donohue A, Spaepen F (2008) Effect of sample size on deformation in amorphous metals. J Appl Phys 103:083539CrossRef
10.
Zurück zum Zitat Jang D, Greer JR (2010) Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat Mater 9:215–219 Jang D, Greer JR (2010) Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat Mater 9:215–219
11.
Zurück zum Zitat Lewandowski JJ, Wang WH, Greer AL (2005) Intrinsic plasticity or brittleness of metallic glasses. Philos Mag Lett 85:77–87CrossRef Lewandowski JJ, Wang WH, Greer AL (2005) Intrinsic plasticity or brittleness of metallic glasses. Philos Mag Lett 85:77–87CrossRef
12.
Zurück zum Zitat Schroers J, Johnson WL (2004) Ductile bulk metallic glass. Phys Rev Lett 93:255506CrossRef Schroers J, Johnson WL (2004) Ductile bulk metallic glass. Phys Rev Lett 93:255506CrossRef
13.
Zurück zum Zitat Madge S, Louzguine-Luzgin D, Lewandowski J, Greer A (2012) Toughness, extrinsic effects and Poisson’s ratio of bulk metallic glasses. Acta Mater 60:4800–4809CrossRef Madge S, Louzguine-Luzgin D, Lewandowski J, Greer A (2012) Toughness, extrinsic effects and Poisson’s ratio of bulk metallic glasses. Acta Mater 60:4800–4809CrossRef
14.
Zurück zum Zitat Sun BA, Wang WH (2015) The fracture of bulk metallic glasses. Prog Mater Sci 74:211–307CrossRef Sun BA, Wang WH (2015) The fracture of bulk metallic glasses. Prog Mater Sci 74:211–307CrossRef
15.
Zurück zum Zitat Jiang M, Dai L (2007) Intrinsic correlation between fragility and bulk modulus in metallic glasses. Phys Rev B 76:054204CrossRef Jiang M, Dai L (2007) Intrinsic correlation between fragility and bulk modulus in metallic glasses. Phys Rev B 76:054204CrossRef
16.
Zurück zum Zitat Greaves GN, Sen S (2007) Inorganic glasses, glass-forming liquids and amorphizing solids. Adv Phys 56:1–166CrossRef Greaves GN, Sen S (2007) Inorganic glasses, glass-forming liquids and amorphizing solids. Adv Phys 56:1–166CrossRef
17.
Zurück zum Zitat Johnson WL, Samwer K (2005) A universal criterion for plastic yielding of metallic glasses with a (T/T g)2/3 temperature dependence. Phys Rev Lett 95:195501CrossRef Johnson WL, Samwer K (2005) A universal criterion for plastic yielding of metallic glasses with a (T/T g)2/3 temperature dependence. Phys Rev Lett 95:195501CrossRef
18.
Zurück zum Zitat Ngai KL, Wang LM, Liu R, Wang WH (2014) Microscopic dynamics perspective on the relationship between Poisson’s ratio and ductility of metallic glasses. J Chem Phys 140:044511CrossRef Ngai KL, Wang LM, Liu R, Wang WH (2014) Microscopic dynamics perspective on the relationship between Poisson’s ratio and ductility of metallic glasses. J Chem Phys 140:044511CrossRef
19.
Zurück zum Zitat Wang Z, Ngai KL, Wang WH (2015) Understanding the changes in ductility and Poisson’s ratio of metallic glasses during annealing from microscopic dynamics. J Appl Phys 118:034901CrossRef Wang Z, Ngai KL, Wang WH (2015) Understanding the changes in ductility and Poisson’s ratio of metallic glasses during annealing from microscopic dynamics. J Appl Phys 118:034901CrossRef
20.
Zurück zum Zitat Baricco M, Baser TA, Das J, Eckert J (2009) Correlation between Poisson ratio and Mohr–Coulomb coefficient in metallic glasses. J Alloys Compd 483:125–131CrossRef Baricco M, Baser TA, Das J, Eckert J (2009) Correlation between Poisson ratio and Mohr–Coulomb coefficient in metallic glasses. J Alloys Compd 483:125–131CrossRef
21.
Zurück zum Zitat Greaves GN, Greer A, Lakes R, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10:823–837CrossRef Greaves GN, Greer A, Lakes R, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10:823–837CrossRef
22.
Zurück zum Zitat Argon AS (1979) Plastic deformation in metallic glasses. Acta Metall 27:47–58CrossRef Argon AS (1979) Plastic deformation in metallic glasses. Acta Metall 27:47–58CrossRef
23.
Zurück zum Zitat Schall P, Weitz DA, Spaepen F (2007) Structural rearrangements that govern flow in colloidal glasses. Science 318:1895–1899CrossRef Schall P, Weitz DA, Spaepen F (2007) Structural rearrangements that govern flow in colloidal glasses. Science 318:1895–1899CrossRef
24.
Zurück zum Zitat Delogu F (2008) Identification and characterization of potential shear transformation zones in metallic glasses. Phys Rev Lett 100:255901CrossRef Delogu F (2008) Identification and characterization of potential shear transformation zones in metallic glasses. Phys Rev Lett 100:255901CrossRef
25.
Zurück zum Zitat Greer AL, Cheng YQ, Ma E (2013) Shear bands in metallic glasses. Mater Sci Eng R 74:71–132CrossRef Greer AL, Cheng YQ, Ma E (2013) Shear bands in metallic glasses. Mater Sci Eng R 74:71–132CrossRef
26.
Zurück zum Zitat Demetriou MD, Launey ME, Garrett G et al (2011) A damage-tolerant glass. Nat Mater 10:123–128CrossRef Demetriou MD, Launey ME, Garrett G et al (2011) A damage-tolerant glass. Nat Mater 10:123–128CrossRef
27.
Zurück zum Zitat Sun BA, Hu YC, Wang DP et al (2016) Correlation between local elastic heterogeneities and overall elastic properties in metallic glasses. Acta Mater 121:266–276CrossRef Sun BA, Hu YC, Wang DP et al (2016) Correlation between local elastic heterogeneities and overall elastic properties in metallic glasses. Acta Mater 121:266–276CrossRef
28.
Zurück zum Zitat Cheng YQ, Han Z, Li Y, Ma E (2009) Cold versus hot shear banding in bulk metallic glass. Phys Rev B 80:134115CrossRef Cheng YQ, Han Z, Li Y, Ma E (2009) Cold versus hot shear banding in bulk metallic glass. Phys Rev B 80:134115CrossRef
29.
Zurück zum Zitat Wright WJ, Samale MW, Hufnagel TC, LeBlanc MM, Florando JN (2009) Studies of shear band velocity using spatially and temporally resolved measurements of strain during quasistatic compression of a bulk metallic glass. Acta Mater 57:4639–4648CrossRef Wright WJ, Samale MW, Hufnagel TC, LeBlanc MM, Florando JN (2009) Studies of shear band velocity using spatially and temporally resolved measurements of strain during quasistatic compression of a bulk metallic glass. Acta Mater 57:4639–4648CrossRef
30.
Zurück zum Zitat Klaumünzer D, Maaß R, Löffler JF (2011) Stick-slip dynamics and recent insights into shear banding in metallic glasses. J Mater Res 26:1453–1463CrossRef Klaumünzer D, Maaß R, Löffler JF (2011) Stick-slip dynamics and recent insights into shear banding in metallic glasses. J Mater Res 26:1453–1463CrossRef
31.
Zurück zum Zitat Wang Z, Qiao JW, Yang HJ, Liaw PK, Huang CJ, Li LF (2015) Serration dynamics in a Zr-based bulk metallic glass. Metall Mater Trans A 46A:2404–2414CrossRef Wang Z, Qiao JW, Yang HJ, Liaw PK, Huang CJ, Li LF (2015) Serration dynamics in a Zr-based bulk metallic glass. Metall Mater Trans A 46A:2404–2414CrossRef
32.
Zurück zum Zitat Sun BA, Pauly S, Tan J et al (2012) Serrated flow and stick–slip deformation dynamics in the presence of shear-band interactions for a Zr-based metallic glass. Acta Mater 60:4160–4171CrossRef Sun BA, Pauly S, Tan J et al (2012) Serrated flow and stick–slip deformation dynamics in the presence of shear-band interactions for a Zr-based metallic glass. Acta Mater 60:4160–4171CrossRef
33.
Zurück zum Zitat Song SX, Nieh TG (2011) Direct measurements of shear band propagation in metallic glasses—an overview. Intermetallics 19:1968–1977CrossRef Song SX, Nieh TG (2011) Direct measurements of shear band propagation in metallic glasses—an overview. Intermetallics 19:1968–1977CrossRef
34.
Zurück zum Zitat Jiang MQ, Dai LH (2010) Short-range-order effects on intrinsic plasticity of metallic glasses. Philos Mag Lett 90:269–277CrossRef Jiang MQ, Dai LH (2010) Short-range-order effects on intrinsic plasticity of metallic glasses. Philos Mag Lett 90:269–277CrossRef
35.
Zurück zum Zitat Zhang ZF, Zhang H, Pan XF, Das J, Eckert J (2005) Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass. Philos Mag Lett 85:513–521CrossRef Zhang ZF, Zhang H, Pan XF, Das J, Eckert J (2005) Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass. Philos Mag Lett 85:513–521CrossRef
36.
Zurück zum Zitat Wu FF, Zhang ZF, Mao SX (2007) Compressive properties of bulk metallic glass with small aspect ratio. J Mater Res 22:501–507CrossRef Wu FF, Zhang ZF, Mao SX (2007) Compressive properties of bulk metallic glass with small aspect ratio. J Mater Res 22:501–507CrossRef
37.
Zurück zum Zitat Hofmann DC, Suh JY, Wiest A et al (2008) Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451:1085–1089CrossRef Hofmann DC, Suh JY, Wiest A et al (2008) Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451:1085–1089CrossRef
38.
Zurück zum Zitat Qiao JW, Zhang Y, Jia HL, Yang HJ, Liaw PK, Xu BS (2012) Tensile softening of metallic-glass-matrix composites in the supercooled liquid region. Appl Phys Lett 100:121902CrossRef Qiao JW, Zhang Y, Jia HL, Yang HJ, Liaw PK, Xu BS (2012) Tensile softening of metallic-glass-matrix composites in the supercooled liquid region. Appl Phys Lett 100:121902CrossRef
39.
Zurück zum Zitat Pauly S, Gorantla S, Wang G, Kühn U, Eckert J (2010) Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat Mater 9:473–477CrossRef Pauly S, Gorantla S, Wang G, Kühn U, Eckert J (2010) Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat Mater 9:473–477CrossRef
40.
Zurück zum Zitat Saida J, Setyawan ADH, Kato H, Inoue A (2005) Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr–Al–Ni–Pd bulk metallic glass. Appl Phys Lett 87:151907CrossRef Saida J, Setyawan ADH, Kato H, Inoue A (2005) Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr–Al–Ni–Pd bulk metallic glass. Appl Phys Lett 87:151907CrossRef
41.
Zurück zum Zitat Yao KF, Ruan F, Yang YQ, Chen N (2006) Superductile bulk metallic glass. Appl Phys Lett 88:122106CrossRef Yao KF, Ruan F, Yang YQ, Chen N (2006) Superductile bulk metallic glass. Appl Phys Lett 88:122106CrossRef
42.
Zurück zum Zitat Du XH, Huang JC, Hsieh KC et al (2007) Two-glassy-phase bulk metallic glass with remarkable plasticity. Appl Phys Lett 91:131901CrossRef Du XH, Huang JC, Hsieh KC et al (2007) Two-glassy-phase bulk metallic glass with remarkable plasticity. Appl Phys Lett 91:131901CrossRef
43.
Zurück zum Zitat Chen W, Chan KC, Chen SH, Guo SF, Li WH, Wang G (2012) Plasticity enhancement of a Zr-based bulk metallic glass by an electroplated Cu/Ni bilayered coating. Mater Sci Eng A 552:199–203CrossRef Chen W, Chan KC, Chen SH, Guo SF, Li WH, Wang G (2012) Plasticity enhancement of a Zr-based bulk metallic glass by an electroplated Cu/Ni bilayered coating. Mater Sci Eng A 552:199–203CrossRef
44.
Zurück zum Zitat Harms U, Jin O, Schwarz RB (2003) Effects of plastic deformation on the elastic modulus and density of bulk amorphous Pd40Ni10Cu30P20. J Non Cryst Solids 317:200–205CrossRef Harms U, Jin O, Schwarz RB (2003) Effects of plastic deformation on the elastic modulus and density of bulk amorphous Pd40Ni10Cu30P20. J Non Cryst Solids 317:200–205CrossRef
45.
Zurück zum Zitat Zhang Y, Zhao DQ, Wang RJ, Wang WH (2003) Formation and properties of Zr48Nb8Cu14Ni12Be18 bulk metallic glass. Acta Mater 51:1971–1979CrossRef Zhang Y, Zhao DQ, Wang RJ, Wang WH (2003) Formation and properties of Zr48Nb8Cu14Ni12Be18 bulk metallic glass. Acta Mater 51:1971–1979CrossRef
46.
Zurück zum Zitat Golding B, Hsu FSL, Bagley BG (1972) Soft transverse phonons in a metallic glass. Phys Rev Lett 29:68–70CrossRef Golding B, Hsu FSL, Bagley BG (1972) Soft transverse phonons in a metallic glass. Phys Rev Lett 29:68–70CrossRef
48.
Zurück zum Zitat Schroers J, Lohwongwatana B, Johnson WL, Peker A (2005) Gold based bulk metallic glass. Appl Phys Lett 87:061912CrossRef Schroers J, Lohwongwatana B, Johnson WL, Peker A (2005) Gold based bulk metallic glass. Appl Phys Lett 87:061912CrossRef
49.
Zurück zum Zitat Chen HS, Krause JT, Coleman E (1975) Elastic constants, hardness and their implications to flow properties of metallic glasses. J Non Cryst Solids 18:157–171CrossRef Chen HS, Krause JT, Coleman E (1975) Elastic constants, hardness and their implications to flow properties of metallic glasses. J Non Cryst Solids 18:157–171CrossRef
50.
Zurück zum Zitat Ponnambalam V, Poon SJ, Shiflet GJ (2004) Fe–Mn–Cr–Mo–(Y, Ln)–C–B (Ln = lanthanides) bulk metallic glasses as formable amorphous steel alloys. J Mater Res 19:3046–3052CrossRef Ponnambalam V, Poon SJ, Shiflet GJ (2004) Fe–Mn–Cr–Mo–(Y, Ln)–C–B (Ln = lanthanides) bulk metallic glasses as formable amorphous steel alloys. J Mater Res 19:3046–3052CrossRef
51.
Zurück zum Zitat Donovan PE (1989) A yield criterion for Pd40Ni40P20 metallic glass. Acta Metall 37:445–456CrossRef Donovan PE (1989) A yield criterion for Pd40Ni40P20 metallic glass. Acta Metall 37:445–456CrossRef
52.
Zurück zum Zitat Xu DH, Duan G, Johnson WL, Garland C (2004) Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm. Acta Mater 52:3493–3497CrossRef Xu DH, Duan G, Johnson WL, Garland C (2004) Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm. Acta Mater 52:3493–3497CrossRef
53.
Zurück zum Zitat Choi-Yim H, Xu DH, Johnson WL (2003) Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X = B, Fe, Cu) alloy systems. Appl Phys Lett 82:1030–1032CrossRef Choi-Yim H, Xu DH, Johnson WL (2003) Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X = B, Fe, Cu) alloy systems. Appl Phys Lett 82:1030–1032CrossRef
54.
Zurück zum Zitat Lewandowski JJ, Lowhaphandu P (2002) Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal. Philos Mag A 82:3427–3441CrossRef Lewandowski JJ, Lowhaphandu P (2002) Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal. Philos Mag A 82:3427–3441CrossRef
55.
Zurück zum Zitat Wright WJ, Saha R, Nix WD (2001) Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater Trans 42:642–649CrossRef Wright WJ, Saha R, Nix WD (2001) Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater Trans 42:642–649CrossRef
56.
Zurück zum Zitat Subhash G, Dowding RJ, Kecskes LJ (2002) Characterization of uniaxial compressive response of bulk amorphous Zr–Ti–Cu–Ni–Be alloy. Mater Sci Eng A 334:33–40CrossRef Subhash G, Dowding RJ, Kecskes LJ (2002) Characterization of uniaxial compressive response of bulk amorphous Zr–Ti–Cu–Ni–Be alloy. Mater Sci Eng A 334:33–40CrossRef
57.
Zurück zum Zitat Keryvin V, Vaillant ML, Rouxel T, Huger M, Gloriant T, Kawamura Y (2002) Thermal stability and crystallisation of a Zr55Cu30Al10Ni5 bulk metallic glass studied by in situ ultrasonic echography. Intermetallics 10:1289–1296CrossRef Keryvin V, Vaillant ML, Rouxel T, Huger M, Gloriant T, Kawamura Y (2002) Thermal stability and crystallisation of a Zr55Cu30Al10Ni5 bulk metallic glass studied by in situ ultrasonic echography. Intermetallics 10:1289–1296CrossRef
58.
Zurück zum Zitat Conner RD, Li Y, Nix WD, Johnson WL (2004) Shear band spacing under bending of Zr-based metallic glass plates. Acta Mater 52:2429–2434CrossRef Conner RD, Li Y, Nix WD, Johnson WL (2004) Shear band spacing under bending of Zr-based metallic glass plates. Acta Mater 52:2429–2434CrossRef
59.
Zurück zum Zitat Xu DH, Duan G, Johnson WL (2004) Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys Rev Lett 92:245504CrossRef Xu DH, Duan G, Johnson WL (2004) Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys Rev Lett 92:245504CrossRef
60.
Zurück zum Zitat Duan G, Xu DH, Zhang Q et al (2005) Molecular dynamics study of the binary Cu46Zr54 metallic glass motivated by experiments: glass formation and atomic-level structure. Phys Rev B 71:224208CrossRef Duan G, Xu DH, Zhang Q et al (2005) Molecular dynamics study of the binary Cu46Zr54 metallic glass motivated by experiments: glass formation and atomic-level structure. Phys Rev B 71:224208CrossRef
61.
Zurück zum Zitat Inoue A, Zhang W, Zhang T, Kurosaka K (2001) High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater 49:2645–2652CrossRef Inoue A, Zhang W, Zhang T, Kurosaka K (2001) High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater 49:2645–2652CrossRef
62.
Zurück zum Zitat Xu DH, Lohwongwatana B, Duan G, Johnson WL, Garland C (2004) Bulk metallic glass formation in binary Cu-rich alloy series—Cu100–xZrx (x = 34, 36 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater 52:2621–2624CrossRef Xu DH, Lohwongwatana B, Duan G, Johnson WL, Garland C (2004) Bulk metallic glass formation in binary Cu-rich alloy series—Cu100–xZrx (x = 34, 36 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater 52:2621–2624CrossRef
63.
Zurück zum Zitat Zhang B, Pan MX, Zhao DQ, Wang WH (2004) “Soft” bulk metallic glasses based on cerium. Appl Phys Lett 85:61–63CrossRef Zhang B, Pan MX, Zhao DQ, Wang WH (2004) “Soft” bulk metallic glasses based on cerium. Appl Phys Lett 85:61–63CrossRef
64.
Zurück zum Zitat Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mater Sci Eng R 44:45–89CrossRef Wang WH, Dong C, Shek CH (2004) Bulk metallic glasses. Mater Sci Eng R 44:45–89CrossRef
66.
Zurück zum Zitat Yang GN, Shao Y, Yao KF (2016) The material-dependence of plasticity in metallic glasses: an origin from shear band thermology. Mater Des 96:189–194 Yang GN, Shao Y, Yao KF (2016) The material-dependence of plasticity in metallic glasses: an origin from shear band thermology. Mater Des 96:189–194
67.
Zurück zum Zitat Maaß R, Klaumünzer D, Löffler J (2011) Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass. Acta Mater 59:3205–3213CrossRef Maaß R, Klaumünzer D, Löffler J (2011) Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass. Acta Mater 59:3205–3213CrossRef
68.
Zurück zum Zitat Chen Y, Jiang MQ, Wei YJ, Dai LH (2011) Failure criterion for metallic glasses. Philos Mag 91:4536–4554CrossRef Chen Y, Jiang MQ, Wei YJ, Dai LH (2011) Failure criterion for metallic glasses. Philos Mag 91:4536–4554CrossRef
69.
Zurück zum Zitat Rouxel T (2007) Elastic properties and short-to medium-range order in glasses. J Am Ceram Soc 90:3019–3039CrossRef Rouxel T (2007) Elastic properties and short-to medium-range order in glasses. J Am Ceram Soc 90:3019–3039CrossRef
70.
Zurück zum Zitat Pugh SF (1954) Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45:823–843CrossRef Pugh SF (1954) Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45:823–843CrossRef
71.
72.
Zurück zum Zitat Na JH, Park ES, Kim YC, Fleury E, Kim WT, Kim DH (2008) Poisson’s ratio and fragility of bulk metallic glasses. J Mater Res 23:523–528CrossRef Na JH, Park ES, Kim YC, Fleury E, Kim WT, Kim DH (2008) Poisson’s ratio and fragility of bulk metallic glasses. J Mater Res 23:523–528CrossRef
73.
Zurück zum Zitat Novikov VN, Sokolov AP (2004) Poisson’s ratio and the fragility of glass-forming liquids. Nature 431:961–963CrossRef Novikov VN, Sokolov AP (2004) Poisson’s ratio and the fragility of glass-forming liquids. Nature 431:961–963CrossRef
74.
Zurück zum Zitat Dubach A, Dalla Torre FH, Loeffler JF (2009) Constitutive model for inhomogeneous flow in bulk metallic glasses. Acta Mater 57:881–892CrossRef Dubach A, Dalla Torre FH, Loeffler JF (2009) Constitutive model for inhomogeneous flow in bulk metallic glasses. Acta Mater 57:881–892CrossRef
75.
Zurück zum Zitat Dubach A, Dalla Torre FH, Loeffler JF (2007) Deformation kinetics in Zr-based bulk metallic glasses and its dependence on temperature and strain-rate sensitivity. Philos Mag Lett 87:695–704CrossRef Dubach A, Dalla Torre FH, Loeffler JF (2007) Deformation kinetics in Zr-based bulk metallic glasses and its dependence on temperature and strain-rate sensitivity. Philos Mag Lett 87:695–704CrossRef
76.
Zurück zum Zitat Sun YH (2015) Inverse ductile-brittle transition in metallic glasses? Mater Sci Technol 31:635–650CrossRef Sun YH (2015) Inverse ductile-brittle transition in metallic glasses? Mater Sci Technol 31:635–650CrossRef
77.
Zurück zum Zitat Yang GN, Gu JL, Chen SQ, Shao Y, Wang H, Yao KF (2016) Serration behavior of a Zr-based metallic glass under different constrained loading conditions. Metall Mater Trans A 47:5395–5400CrossRef Yang GN, Gu JL, Chen SQ, Shao Y, Wang H, Yao KF (2016) Serration behavior of a Zr-based metallic glass under different constrained loading conditions. Metall Mater Trans A 47:5395–5400CrossRef
78.
Zurück zum Zitat Yang GN, Sun BA, Chen SQ, Shao Y, Yao KF (2016) The multiple shear bands and plasticity in metallic glasses: a possible origin from stress redistribution. J Alloys Compd 695:3457–3466CrossRef Yang GN, Sun BA, Chen SQ, Shao Y, Yao KF (2016) The multiple shear bands and plasticity in metallic glasses: a possible origin from stress redistribution. J Alloys Compd 695:3457–3466CrossRef
Metadaten
Titel
Understanding the effects of Poisson’s ratio on the shear band behavior and plasticity of metallic glasses
verfasst von
G. N. Yang
B. A. Sun
S. Q. Chen
J. L. Gu
Y. Shao
H. Wang
K. F. Yao
Publikationsdatum
21.02.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0917-9

Weitere Artikel der Ausgabe 11/2017

Journal of Materials Science 11/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.