Skip to main content
Erschienen in: Journal of Materials Science 10/2018

13.02.2018 | Metals

Understanding the structure-Poisson’s ratio relation in bulk metallic glass

verfasst von: Peng Xue, Yongjiang Huang, Shu Guo, Hongbo Fan, Zhiliang Ning, Jianfei Sun, Peter K. Liaw

Erschienen in: Journal of Materials Science | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Here, we employ isothermal annealing on a ZrCuNiAl bulk metallic glass (BMG) to obtain different structural states. The nanohardness of the studied Zr-based BMG shows a clear transition from heterogeneous to homogeneous distribution and the Poisson’s ratio gradually decreases with prolonging the isothermal annealing time. Then, the structural change is analyzed using high-resolution transmission electron microscope. The structure–Poisson’s ratio relation can be quantitatively illustrated by a rule of mixture. These findings have implications for better understanding the structure–property relation from atomic level and thus exploring high-performance BMGs of excellent strength and ductility.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen MW (2008) Mechanical behavior of metallic glasses: microscopic understanding of strength and ductility. Annu Rev Mater Res 38:445–469CrossRef Chen MW (2008) Mechanical behavior of metallic glasses: microscopic understanding of strength and ductility. Annu Rev Mater Res 38:445–469CrossRef
2.
Zurück zum Zitat Axinte E (2011) Glasses as engineering materials: a review. Mater Des 32:1717–1732CrossRef Axinte E (2011) Glasses as engineering materials: a review. Mater Des 32:1717–1732CrossRef
3.
Zurück zum Zitat Chen DZ, Shi CY, An Q, Zeng QS, Mao WL, Goddard WAR, Greer JR (2015) Fractal atomic-level percolation in metallic glasses. Science 349:1306–1310CrossRef Chen DZ, Shi CY, An Q, Zeng QS, Mao WL, Goddard WAR, Greer JR (2015) Fractal atomic-level percolation in metallic glasses. Science 349:1306–1310CrossRef
4.
Zurück zum Zitat Ketov SV, Sun YH, Nachum S, Lu Z, Checchi A, Beraldin AR, Bai HY, Wang WH, Louzguine-Luzgin DV, Carpenter MA, Greer AL (2015) Rejuvenation of metallic glasses by non-affine thermal strain. Nature 524:200–203CrossRef Ketov SV, Sun YH, Nachum S, Lu Z, Checchi A, Beraldin AR, Bai HY, Wang WH, Louzguine-Luzgin DV, Carpenter MA, Greer AL (2015) Rejuvenation of metallic glasses by non-affine thermal strain. Nature 524:200–203CrossRef
5.
Zurück zum Zitat Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci 56:654–724CrossRef Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci 56:654–724CrossRef
6.
Zurück zum Zitat Sun JF, Huang YJ, Shen J, Wang G, Mccartney DG (2006) Superplastic formability of a Zr–Ti–Ni–Cu–Be bulk metallic glass. J Alloys Compd 415:198–203CrossRef Sun JF, Huang YJ, Shen J, Wang G, Mccartney DG (2006) Superplastic formability of a Zr–Ti–Ni–Cu–Be bulk metallic glass. J Alloys Compd 415:198–203CrossRef
7.
Zurück zum Zitat Huang YJ, Fan H, Wang D, Sun Y, Liu F, Shen J, Sun J, Mi J (2014) The effect of cooling rate on the wear performance of a ZrCuAlAg bulk metallic glass. Mater Des 58:284–289CrossRef Huang YJ, Fan H, Wang D, Sun Y, Liu F, Shen J, Sun J, Mi J (2014) The effect of cooling rate on the wear performance of a ZrCuAlAg bulk metallic glass. Mater Des 58:284–289CrossRef
8.
Zurück zum Zitat Wang G, Fan HB, Huang YJ, Shen J, Chen ZH (2014) A new TiCuHfSi bulk metallic glass with potential for biomedical applications. Mater Des 54:251–255CrossRef Wang G, Fan HB, Huang YJ, Shen J, Chen ZH (2014) A new TiCuHfSi bulk metallic glass with potential for biomedical applications. Mater Des 54:251–255CrossRef
9.
Zurück zum Zitat Huang YJ, Khong JC, Connolley T, Mi J (2014) The onset of plasticity of a Zr-based bulk metallic glass. Int J Plast 60:87–100CrossRef Huang YJ, Khong JC, Connolley T, Mi J (2014) The onset of plasticity of a Zr-based bulk metallic glass. Int J Plast 60:87–100CrossRef
10.
Zurück zum Zitat Huang YJ, Khong JC, Connolley T, Mi J (2013) In situ study of the evolution of atomic strain of bulk metallic glass and its effects on shear band formation. Scr Mater 69:207–210CrossRef Huang YJ, Khong JC, Connolley T, Mi J (2013) In situ study of the evolution of atomic strain of bulk metallic glass and its effects on shear band formation. Scr Mater 69:207–210CrossRef
11.
Zurück zum Zitat Matthews DTA, Ocelík V, Bronsveld PM, De Hosson JTM (2008) An electron microscopy appraisal of tensile fracture in metallic glasses. Acta Mater 56:1762–1773CrossRef Matthews DTA, Ocelík V, Bronsveld PM, De Hosson JTM (2008) An electron microscopy appraisal of tensile fracture in metallic glasses. Acta Mater 56:1762–1773CrossRef
13.
Zurück zum Zitat Liu YH, Wang G, Wang RJ, Zhao DQ, Pan MX, Wang WH (2007) Super plastic bulk metallic glasses at room temperature. Science 315:1385–1388CrossRef Liu YH, Wang G, Wang RJ, Zhao DQ, Pan MX, Wang WH (2007) Super plastic bulk metallic glasses at room temperature. Science 315:1385–1388CrossRef
14.
Zurück zum Zitat Miracle DB (2004) A structural model for metallic glasses. Nat Mater 3:697–702CrossRef Miracle DB (2004) A structural model for metallic glasses. Nat Mater 3:697–702CrossRef
15.
Zurück zum Zitat Appel F, Wagner R (1998) Microstructure and deformation of two-phase γ-titanium aluminides. Mater Sci Eng R 22:187–268CrossRef Appel F, Wagner R (1998) Microstructure and deformation of two-phase γ-titanium aluminides. Mater Sci Eng R 22:187–268CrossRef
16.
Zurück zum Zitat Liu YH, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen MW (2011) Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Phys Rev Lett 106:125504-1–125504-4 Liu YH, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen MW (2011) Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Phys Rev Lett 106:125504-1–125504-4
18.
Zurück zum Zitat Park ES, Chang HJ, Lee JY, Kim DH (2007) Improvement of plasticity by tailoring combination of constituent elements in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses. J Mater Res 22:3440–3447CrossRef Park ES, Chang HJ, Lee JY, Kim DH (2007) Improvement of plasticity by tailoring combination of constituent elements in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses. J Mater Res 22:3440–3447CrossRef
19.
Zurück zum Zitat Du XH, Huang JC, Hsieh KC, Lai YH, Chen HM, Jang JSC, Liaw PK (2007) Two-glassy-phase bulk metallic glass with remarkable plasticity. Appl Phys Lett 91:131901-1–131901-3 Du XH, Huang JC, Hsieh KC, Lai YH, Chen HM, Jang JSC, Liaw PK (2007) Two-glassy-phase bulk metallic glass with remarkable plasticity. Appl Phys Lett 91:131901-1–131901-3
20.
Zurück zum Zitat Kim KB, Das J, Baier F, Tang MB, Wang WH, Eckert J (2006) Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. Appl Phys Lett 88:51911-1–51911-3 Kim KB, Das J, Baier F, Tang MB, Wang WH, Eckert J (2006) Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. Appl Phys Lett 88:51911-1–51911-3
21.
Zurück zum Zitat Zhang Y, Wang CZ, Zhang F, Mendelev MI, Kramer MJ, Ho KM (2014) Strong correlations of dynamical and structural heterogeneities with localized soft modes in a Cu–Zr metallic glass. Appl Phys Lett 105:151910-1–151910-5 Zhang Y, Wang CZ, Zhang F, Mendelev MI, Kramer MJ, Ho KM (2014) Strong correlations of dynamical and structural heterogeneities with localized soft modes in a Cu–Zr metallic glass. Appl Phys Lett 105:151910-1–151910-5
22.
Zurück zum Zitat Das J, Tang MB, Kim KB, Theissmann R, Baier F, Wang WH, Eckert J (2005) “Work-hardenable” ductile bulk metallic glass. Phys Rev Lett 94:205501-1–205501-4CrossRef Das J, Tang MB, Kim KB, Theissmann R, Baier F, Wang WH, Eckert J (2005) “Work-hardenable” ductile bulk metallic glass. Phys Rev Lett 94:205501-1–205501-4CrossRef
23.
Zurück zum Zitat Ning ZL, Liang WZ, Zhang MX, Li ZZ, Sun HC, Liu AL, Sun JF (2016) High tensile plasticity and strength of a CuZr-based bulk metallic glass composite. Mater Des 90:145–150CrossRef Ning ZL, Liang WZ, Zhang MX, Li ZZ, Sun HC, Liu AL, Sun JF (2016) High tensile plasticity and strength of a CuZr-based bulk metallic glass composite. Mater Des 90:145–150CrossRef
24.
Zurück zum Zitat Wu JL, Li WH, Pan Y, Qi JY, Wang JG (2016) Microalloying and microstructures of Cu-based bulk metallic glasses and composites and relevant mechanical properties. Mater Des 89:1130–1136CrossRef Wu JL, Li WH, Pan Y, Qi JY, Wang JG (2016) Microalloying and microstructures of Cu-based bulk metallic glasses and composites and relevant mechanical properties. Mater Des 89:1130–1136CrossRef
25.
Zurück zum Zitat Concustell A, Mattern N, Wendrock H, Kuehn U, Gebert A, Eckert J, Greer AL, Sort J, Baró MD (2007) Mechanical properties of a two-phase amorphous Ni–Nb–Y alloy studied by nanoindentation. Scr Mater 56:85–88CrossRef Concustell A, Mattern N, Wendrock H, Kuehn U, Gebert A, Eckert J, Greer AL, Sort J, Baró MD (2007) Mechanical properties of a two-phase amorphous Ni–Nb–Y alloy studied by nanoindentation. Scr Mater 56:85–88CrossRef
26.
Zurück zum Zitat Wang JG, Zhao DQ, Pan MX, Shek CH, Wang WH (2009) Mechanical heterogeneity and mechanism of plasticity in metallic glasses. Appl Phys Lett 94:31904-1–31904-3 Wang JG, Zhao DQ, Pan MX, Shek CH, Wang WH (2009) Mechanical heterogeneity and mechanism of plasticity in metallic glasses. Appl Phys Lett 94:31904-1–31904-3
27.
Zurück zum Zitat Dmowski W, Iwashita T, Chuang C, Almer J, Egami T (2010) Elastic heterogeneity in metallic glasses. Phys Rev Lett 105:205502-1–205502-4CrossRef Dmowski W, Iwashita T, Chuang C, Almer J, Egami T (2010) Elastic heterogeneity in metallic glasses. Phys Rev Lett 105:205502-1–205502-4CrossRef
28.
Zurück zum Zitat Chen CQ, Pei YT, De Hosson JTM (2012) Apparently homogeneous but intrinsically intermittent flow of taper-free metallic glass nanopillars. Scr Mater 67:947–950CrossRef Chen CQ, Pei YT, De Hosson JTM (2012) Apparently homogeneous but intrinsically intermittent flow of taper-free metallic glass nanopillars. Scr Mater 67:947–950CrossRef
29.
Zurück zum Zitat Ngai KL, Wang LM, Liu RP, Wang WH (2014) Microscopic dynamics perspective on the relationship between Poisson’s ratio and ductility of metallic glasses. J Chem Phys 140:44511-1–44511-7 Ngai KL, Wang LM, Liu RP, Wang WH (2014) Microscopic dynamics perspective on the relationship between Poisson’s ratio and ductility of metallic glasses. J Chem Phys 140:44511-1–44511-7
31.
Zurück zum Zitat Lewandowski JJ, Wang WH, Greer AL (2005) Intrinsic plasticity or brittleness of metallic glasses. Philos Mag Lett 85:77–87CrossRef Lewandowski JJ, Wang WH, Greer AL (2005) Intrinsic plasticity or brittleness of metallic glasses. Philos Mag Lett 85:77–87CrossRef
32.
Zurück zum Zitat Sun YJ, Qu DD, Huang YJ, Liss KD, Wei XS, Xing DW, Shen J (2009) Zr–Cu–Ni–Al bulk metallic glasses with superhigh glass-forming ability. Acta Mater 57:1290–1299CrossRef Sun YJ, Qu DD, Huang YJ, Liss KD, Wei XS, Xing DW, Shen J (2009) Zr–Cu–Ni–Al bulk metallic glasses with superhigh glass-forming ability. Acta Mater 57:1290–1299CrossRef
33.
Zurück zum Zitat Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRef Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRef
34.
Zurück zum Zitat Huang YJ, Chiu YL, Shen J, Chen JJJ, Sun JF (2009) Indentation creep of a Ti-based metallic glass. J Mater Res 24:993–997CrossRef Huang YJ, Chiu YL, Shen J, Chen JJJ, Sun JF (2009) Indentation creep of a Ti-based metallic glass. J Mater Res 24:993–997CrossRef
35.
Zurück zum Zitat Huang YJ, Shen J, Chiu YL, Chen JJJ, Sun JF (2009) Indentation creep of an Fe-based bulk metallic glass. Intermetallics 17:190–194CrossRef Huang YJ, Shen J, Chiu YL, Chen JJJ, Sun JF (2009) Indentation creep of an Fe-based bulk metallic glass. Intermetallics 17:190–194CrossRef
36.
Zurück zum Zitat Vincent S, Murty BS, Kramer MJ, Bhatt J (2015) Micro and nano indentation studies on Zr60Cu10Al15Ni15 bulk metallic glass. Mater Des 65:98–103CrossRef Vincent S, Murty BS, Kramer MJ, Bhatt J (2015) Micro and nano indentation studies on Zr60Cu10Al15Ni15 bulk metallic glass. Mater Des 65:98–103CrossRef
37.
Zurück zum Zitat Huang YJ, Chiu YL, Shen J, Sun Y, Chen JJJ (2010) Mechanical performance of metallic glasses during nanoscratch tests. Intermetallics 18:1056–1061CrossRef Huang YJ, Chiu YL, Shen J, Sun Y, Chen JJJ (2010) Mechanical performance of metallic glasses during nanoscratch tests. Intermetallics 18:1056–1061CrossRef
38.
Zurück zum Zitat Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. Mc Graw-Hill, New York Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. Mc Graw-Hill, New York
39.
Zurück zum Zitat Murali P, Ramamurty U (2005) Embrittlement of a bulk metallic glass due to sub-Tg annealing. Acta Mater 53:1467–1478CrossRef Murali P, Ramamurty U (2005) Embrittlement of a bulk metallic glass due to sub-Tg annealing. Acta Mater 53:1467–1478CrossRef
40.
Zurück zum Zitat Wei R, Yang S, Chang Y, Li YF, Zhang CJ, He L (2014) Mechanical property degradation of a CuZr-based bulk metallic glass composite induced by sub-Tg annealing. Mater Des 56:128–138CrossRef Wei R, Yang S, Chang Y, Li YF, Zhang CJ, He L (2014) Mechanical property degradation of a CuZr-based bulk metallic glass composite induced by sub-Tg annealing. Mater Des 56:128–138CrossRef
41.
Zurück zum Zitat Duine PA, Sietsma J, van den Beukel A (1992) Defect production and annihilation near equilibrium in amorphous Pd40Ni40P20 investigated from viscosity data. Acta Metall Mater 40:743–751CrossRef Duine PA, Sietsma J, van den Beukel A (1992) Defect production and annihilation near equilibrium in amorphous Pd40Ni40P20 investigated from viscosity data. Acta Metall Mater 40:743–751CrossRef
42.
Zurück zum Zitat Fan GY, Cowley JM (1985) Auto-correlation analysis of high resolution electron micrographs of near-amorphous thin films. Ultramicroscopy 17:345–355CrossRef Fan GY, Cowley JM (1985) Auto-correlation analysis of high resolution electron micrographs of near-amorphous thin films. Ultramicroscopy 17:345–355CrossRef
43.
Zurück zum Zitat Wang Q, Liu CT, Yang Y, Liu JB, Dong YD, Lu J (2014) The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu–Zr based bulk metallic glass with minor element additions. Sci Rep 4:4648-1–4648-5 Wang Q, Liu CT, Yang Y, Liu JB, Dong YD, Lu J (2014) The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu–Zr based bulk metallic glass with minor element additions. Sci Rep 4:4648-1–4648-5
44.
Zurück zum Zitat Liang JM, Chen LJ (1994) Autocorrelation function analysis of phase formation in the initial stage of interfacial reactions of molybdenum thin films on (111) Si. Appl Phys Lett 64:1224–1226CrossRef Liang JM, Chen LJ (1994) Autocorrelation function analysis of phase formation in the initial stage of interfacial reactions of molybdenum thin films on (111) Si. Appl Phys Lett 64:1224–1226CrossRef
45.
Zurück zum Zitat Wu Y, Wu HH, Hui XD, Chen GL, Lu ZP (2010) Effects of drawing on the tensile fracture strength and its reliability of small-sized metallic glasses. Acta Mater 58:2564–2576CrossRef Wu Y, Wu HH, Hui XD, Chen GL, Lu ZP (2010) Effects of drawing on the tensile fracture strength and its reliability of small-sized metallic glasses. Acta Mater 58:2564–2576CrossRef
46.
Zurück zum Zitat Liu XJ, Chen GL, Hou HY, Hui X, Yao KF, Lu ZP, Liu CT (2008) Atomistic mechanism for nanocrystallization of metallic glasses. Acta Mater 56:2760–2769CrossRef Liu XJ, Chen GL, Hou HY, Hui X, Yao KF, Lu ZP, Liu CT (2008) Atomistic mechanism for nanocrystallization of metallic glasses. Acta Mater 56:2760–2769CrossRef
47.
Zurück zum Zitat Spaepen F (1977) A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall 25:407–415CrossRef Spaepen F (1977) A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall 25:407–415CrossRef
48.
Zurück zum Zitat Yue GQ, Zhang Y, Sun Y, Shen B, Dong F, Wang ZY, Zhang RJ, Zheng YX, Kramer MJ, Wang SY, Wang CZ, Ho KM, Chen LY (2015) Local structure order in Pd78Cu6Si16 liquid. Sci Rep 5:8277-1–8277-6 Yue GQ, Zhang Y, Sun Y, Shen B, Dong F, Wang ZY, Zhang RJ, Zheng YX, Kramer MJ, Wang SY, Wang CZ, Ho KM, Chen LY (2015) Local structure order in Pd78Cu6Si16 liquid. Sci Rep 5:8277-1–8277-6
49.
Zurück zum Zitat Huo LS, Zeng JF, Wang WH, Liu CT, Yang Y (2013) The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass. Acta Mater 61:4329–4338CrossRef Huo LS, Zeng JF, Wang WH, Liu CT, Yang Y (2013) The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass. Acta Mater 61:4329–4338CrossRef
Metadaten
Titel
Understanding the structure-Poisson’s ratio relation in bulk metallic glass
verfasst von
Peng Xue
Yongjiang Huang
Shu Guo
Hongbo Fan
Zhiliang Ning
Jianfei Sun
Peter K. Liaw
Publikationsdatum
13.02.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 10/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2098-6

Weitere Artikel der Ausgabe 10/2018

Journal of Materials Science 10/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.