Skip to main content

2014 | OriginalPaper | Buchkapitel

6. Underwater Implosion Mechanics: Experimental and Computational Overview

verfasst von : James LeBlanc, J. Ambrico, S. Turner

Erschienen in: Blast Mitigation

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An implodable volume can be defined as a structural body which is acted upon by external pressure and internally contains gas at a lower pressure than the surrounding fluid. An underwater implosion occurs when the body suffers a sudden loss of structural stability and hydrostatic pressure drives the body to collapse inwardly upon itself. The result of the collapse is a rapid decrease in local pressure as the water expands to fill the void, and then a shock wave as the in-rushing water suddenly stops and is compressed. The physics of an implosion event is shown to be similar to the collapse of cavitation and underwater explosion bubbles. The pressure history resulting from an implosion event consists of several primary characteristics, namely an initial pressure drop in the surrounding fluid during the initial collapse, corresponding to the inward rush of the surrounding fluid, followed by a subsequent positive pressure spike and decay as the body collapses upon itself and the water motion is arrested. It is observed that the magnitude of both the pressure drop and subsequent peak pressures are dependent upon the hydrostatic collapse pressure. Additionally, the ductility of implodable volume material is shown to have an effect on the amount of energy released during the collapse with brittle implodables releasing larger amounts of energy into the surrounding fluid than ductile volumes. Finally, implodable volumes which are coated with energy absorbing materials display decreased energy in the implosion pulses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Brennen CE (1995) Cavitation and bubble dynamics. Oxford University Press, New York, NY Brennen CE (1995) Cavitation and bubble dynamics. Oxford University Press, New York, NY
Zurück zum Zitat Cole RH (1948) Underwater explosions. Princeton University Press, Princeton, NJ Cole RH (1948) Underwater explosions. Princeton University Press, Princeton, NJ
Zurück zum Zitat Cor JJ, Miller TF (2009) Theoretical analysis of hydrostatic implodable volumes with solid inner structures. J Fluid Struct 25:284–303CrossRef Cor JJ, Miller TF (2009) Theoretical analysis of hydrostatic implodable volumes with solid inner structures. J Fluid Struct 25:284–303CrossRef
Zurück zum Zitat Dingus M (2007) Pressure vessel implosion sea test - final report, SBIR phase II topic N01-106 final report, contract no. N00024-04-C-4145 Dingus M (2007) Pressure vessel implosion sea test - final report, SBIR phase II topic N01-106 final report, contract no. N00024-04-C-4145
Zurück zum Zitat Geers TL, Hunter KS (2002) An integrated wave-effects model for an underwater explosion bubble. J Acoust Soc Am 111:1584–1601CrossRef Geers TL, Hunter KS (2002) An integrated wave-effects model for an underwater explosion bubble. J Acoust Soc Am 111:1584–1601CrossRef
Zurück zum Zitat Gilmore FR (1952) The growth or collapse of a spherical bubble in a viscous compressible liquid, report no. 26-4, Hydrodynamics Laboratory, California Institute of Technology, Pasadena, CA Gilmore FR (1952) The growth or collapse of a spherical bubble in a viscous compressible liquid, report no. 26-4, Hydrodynamics Laboratory, California Institute of Technology, Pasadena, CA
Zurück zum Zitat Herring C (1941) Theory of the pulsations of the gas bubble produced by an underwater explosion, OSRD report no. 236 Herring C (1941) Theory of the pulsations of the gas bubble produced by an underwater explosion, OSRD report no. 236
Zurück zum Zitat Hickling R, Plesset MS (1964) Collapse and rebound of a spherical bubble in water. Phys Fluid 7:7–14MATHCrossRef Hickling R, Plesset MS (1964) Collapse and rebound of a spherical bubble in water. Phys Fluid 7:7–14MATHCrossRef
Zurück zum Zitat Keller JB, Kolodner II (1956) Damping of underwater explosion bubble oscillations. J Appl Phys 27:1152–1161CrossRef Keller JB, Kolodner II (1956) Damping of underwater explosion bubble oscillations. J Appl Phys 27:1152–1161CrossRef
Zurück zum Zitat Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Annu Rev Fluid Mech 9:145–185CrossRef Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Annu Rev Fluid Mech 9:145–185CrossRef
Zurück zum Zitat Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Phil Mag 34:94MATH Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Phil Mag 34:94MATH
Zurück zum Zitat Shin YS (2004) Ship shock modeling and simulation for far-field underwater explosion. Comput Struct 82:2211–2219CrossRef Shin YS (2004) Ship shock modeling and simulation for far-field underwater explosion. Comput Struct 82:2211–2219CrossRef
Zurück zum Zitat Turner SE (2004) Small-scale implosion testing of glass and aluminum cylinders, NUWC-NPT technical memorandum 04-061, Naval Undersea Warfare Center Division, Newport, RI Turner SE (2004) Small-scale implosion testing of glass and aluminum cylinders, NUWC-NPT technical memorandum 04-061, Naval Undersea Warfare Center Division, Newport, RI
Zurück zum Zitat Turner SE (2007) Underwater implosion of glass spheres. J Acoust Soc Am 121(2):844–852CrossRef Turner SE (2007) Underwater implosion of glass spheres. J Acoust Soc Am 121(2):844–852CrossRef
Zurück zum Zitat Turner SE, Ambrico JM (2013) Underwater implosion of cylindrical metal tubes. J Appl Mech 80:011013CrossRef Turner SE, Ambrico JM (2013) Underwater implosion of cylindrical metal tubes. J Appl Mech 80:011013CrossRef
Zurück zum Zitat United States Department of the Navy (2004) The navy unmanned undersea vehicle (UUV) master plan United States Department of the Navy (2004) The navy unmanned undersea vehicle (UUV) master plan
Zurück zum Zitat Vanzant BW, Schraeder AL, Edlund CE, DeHart RC (1970) Pressure pulses generated by the sudden collapse of structures subjected to external hydrostatic pressure, final report project no. 03-1938, U.S. Naval Underwater Weapons Research and Engineering Station, Newport, RI Vanzant BW, Schraeder AL, Edlund CE, DeHart RC (1970) Pressure pulses generated by the sudden collapse of structures subjected to external hydrostatic pressure, final report project no. 03-1938, U.S. Naval Underwater Weapons Research and Engineering Station, Newport, RI
Metadaten
Titel
Underwater Implosion Mechanics: Experimental and Computational Overview
verfasst von
James LeBlanc
J. Ambrico
S. Turner
Copyright-Jahr
2014
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-7267-4_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.