Skip to main content

2019 | OriginalPaper | Buchkapitel

6. Unsupervised Discrete Representation Learning

verfasst von : Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, Masashi Sugiyama

Erschienen in: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Learning discrete representations of data is a central machine learning task because of the compactness of the representations and ease of interpretation. The task includes clustering and hash learning as special cases. Deep neural networks are promising to be used because they can model the non-linearity of data and scale to large datasets. However, their model complexity is huge, and therefore, we need to carefully regularize the networks in order to learn useful and interpretable representations that exhibit intended invariance for applications of interest. To this end, we propose a method called Information Maximizing Self-Augmented Training (IMSAT). In IMSAT, we use data augmentation to impose the invariance on discrete representations. More specifically, we encourage the predicted representations of augmented data points to be close to those of the original data points in an end-to-end fashion. At the same time, we maximize the information-theoretic dependency between data and their predicted discrete representations. Our IMSAT is able to discover interpretable representations that exhibit intended invariance. Extensive experiments on benchmark datasets show that IMSAT produces state-of-the-art results for both clustering and unsupervised hash learning.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Hence, we deduce that Deep Hash, which is only regularized by weight-decay, would not benefit much by using larger networks.
 
Literatur
1.
Zurück zum Zitat Bachman, P., Alsharif, O., Precup, D.: Learning with pseudo-ensembles. In: NIPS (2014) Bachman, P., Alsharif, O., Precup, D.: Learning with pseudo-ensembles. In: NIPS (2014)
3.
Zurück zum Zitat Bertsekas, D.P.: Nonlinear Programming. Athena Scientific Belmont (1999) Bertsekas, D.P.: Nonlinear Programming. Athena Scientific Belmont (1999)
4.
Zurück zum Zitat Bishop, C.M.: Training with noise is equivalent to tikhonov regularization. Neural Comput. 7(1), 108–116 (1995)CrossRef Bishop, C.M.: Training with noise is equivalent to tikhonov regularization. Neural Comput. 7(1), 108–116 (1995)CrossRef
5.
Zurück zum Zitat Bridle, J.S., Heading, A.J.R., MacKay, D.J.C.: Unsupervised classifiers, mutual information and ‘phantom targets’. In: NIPS, pp. 1096–1101 (1991) Bridle, J.S., Heading, A.J.R., MacKay, D.J.C.: Unsupervised classifiers, mutual information and ‘phantom targets’. In: NIPS, pp. 1096–1101 (1991)
6.
Zurück zum Zitat Brown, G.: A new perspective for information theoretic feature selection. In: AISTATS (2009) Brown, G.: A new perspective for information theoretic feature selection. In: AISTATS (2009)
7.
Zurück zum Zitat Coates, A., Lee, H., Ng, A.Y.: An analysis of single-layer networks in unsupervised feature learning. Ann Arbor 1001(48109), 2 (2010) Coates, A., Lee, H., Ng, A.Y.: An analysis of single-layer networks in unsupervised feature learning. Ann Arbor 1001(48109), 2 (2010)
8.
Zurück zum Zitat Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2012)MATH Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2012)MATH
9.
Zurück zum Zitat Dilokthanakul, N., et al.: Deep unsupervised clustering with gaussian mixture variational autoencoders. arXiv preprint arXiv:1611.02648 (2016) Dilokthanakul, N., et al.: Deep unsupervised clustering with gaussian mixture variational autoencoders. arXiv preprint arXiv:​1611.​02648 (2016)
10.
Zurück zum Zitat Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with convolutional neural networks. In: NIPS, pp. 766–774 (2014) Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with convolutional neural networks. In: NIPS, pp. 766–774 (2014)
11.
Zurück zum Zitat Erin Liong, V., Lu, J., Wang, G., Moulin, P., Zhou, J.: Deep hashing for compact binary codes learning. In: CVPR (2015) Erin Liong, V., Lu, J., Wang, G., Moulin, P., Zhou, J.: Deep hashing for compact binary codes learning. In: CVPR (2015)
12.
Zurück zum Zitat Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AISTATS (2011) Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AISTATS (2011)
13.
Zurück zum Zitat Gomes, R., Krause, A., Perona, P.: Discriminative clustering by regularized information maximization. In: NIPS (2010) Gomes, R., Krause, A., Perona, P.: Discriminative clustering by regularized information maximization. In: NIPS (2010)
14.
Zurück zum Zitat Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2013)CrossRef Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2013)CrossRef
15.
Zurück zum Zitat Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)MATH Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)MATH
16.
Zurück zum Zitat Grandvalet, Y., Bengio, Y., et al.: Semi-supervised learning by entropy minimization. In: NIPS (2004) Grandvalet, Y., Bengio, Y., et al.: Semi-supervised learning by entropy minimization. In: NIPS (2004)
17.
Zurück zum Zitat He, K., Wen, F., Sun, J.: K-means hashing: an affinity-preserving quantization method for learning binary compact codes. In: CVPR (2013) He, K., Wen, F., Sun, J.: K-means hashing: an affinity-preserving quantization method for learning binary compact codes. In: CVPR (2013)
18.
Zurück zum Zitat He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: CVPR (2015) He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: CVPR (2015)
19.
Zurück zum Zitat He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
20.
Zurück zum Zitat Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012) Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:​1207.​0580 (2012)
21.
Zurück zum Zitat Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)
22.
Zurück zum Zitat Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: ICCV (2009) Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: ICCV (2009)
23.
Zurück zum Zitat Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015) Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
24.
Zurück zum Zitat Koch, G.: Siamese neural networks for one-shot image recognition. Ph.D. thesis, University of Toronto (2015) Koch, G.: Siamese neural networks for one-shot image recognition. Ph.D. thesis, University of Toronto (2015)
25.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
26.
27.
Zurück zum Zitat Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In: NIPS (2009) Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In: NIPS (2009)
28.
Zurück zum Zitat Lai, H., Pan, Y., Liu, Y., Yan, S.: Simultaneous feature learning and hash coding with deep neural networks. In: CVPR (2015) Lai, H., Pan, Y., Liu, Y., Yan, S.: Simultaneous feature learning and hash coding with deep neural networks. In: CVPR (2015)
29.
Zurück zum Zitat Lake, B.M., Salakhutdinov, R., Gross, J., Tenenbaum, J.B.: One shot learning of simple visual concepts. In: Cognitive Science (2011) Lake, B.M., Salakhutdinov, R., Gross, J., Tenenbaum, J.B.: One shot learning of simple visual concepts. In: Cognitive Science (2011)
30.
Zurück zum Zitat Lang, K.: Newsweeder: learning to filter netnews. In: ICML, pp. 331–339 (1995) Lang, K.: Newsweeder: learning to filter netnews. In: ICML, pp. 331–339 (1995)
31.
Zurück zum Zitat LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef
32.
Zurück zum Zitat Leen, T.K.: From data distributions to regularization in invariant learning. Neural Comput. 7(5), 974–981 (1995)MathSciNetCrossRef Leen, T.K.: From data distributions to regularization in invariant learning. Neural Comput. 7(5), 974–981 (1995)MathSciNetCrossRef
33.
Zurück zum Zitat Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361–397 (2004) Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361–397 (2004)
34.
Zurück zum Zitat Li, W.J., Wang, S., Kang, W.C.: Feature learning based deep supervised hashing with pairwise labels. In: IJCAI (2015) Li, W.J., Wang, S., Kang, W.C.: Feature learning based deep supervised hashing with pairwise labels. In: IJCAI (2015)
35.
Zurück zum Zitat McGill, W.J.: Multivariate information transmission. Psychometrika 19(2), 97–116 (1954)CrossRef McGill, W.J.: Multivariate information transmission. Psychometrika 19(2), 97–116 (1954)CrossRef
36.
Zurück zum Zitat Miyato, T., Maeda, S.I., Koyama, M., Nakae, K., Ishii, S.: Distributional smoothing with virtual adversarial training. In: ICLR (2016) Miyato, T., Maeda, S.I., Koyama, M., Nakae, K., Ishii, S.: Distributional smoothing with virtual adversarial training. In: ICLR (2016)
37.
Zurück zum Zitat Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010) Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)
38.
Zurück zum Zitat Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011) Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)
39.
Zurück zum Zitat Ng, A.Y., Jordan, M.I., Weiss, Y., et al.: On spectral clustering: analysis and an algorithm. In: NIPS (2001) Ng, A.Y., Jordan, M.I., Weiss, Y., et al.: On spectral clustering: analysis and an algorithm. In: NIPS (2001)
40.
Zurück zum Zitat Norouzi, M., Blei, D.M.: Minimal loss hashing for compact binary codes. In: ICML (2011) Norouzi, M., Blei, D.M.: Minimal loss hashing for compact binary codes. In: ICML (2011)
41.
Zurück zum Zitat Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)CrossRef Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)CrossRef
42.
Zurück zum Zitat van den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Advances in Neural Information Processing Systems, pp. 6306–6315 (2017) van den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Advances in Neural Information Processing Systems, pp. 6306–6315 (2017)
43.
Zurück zum Zitat Reed, R., Oh, S., Marks, R.: Regularization using jittered training data. In: IJCNN, vol. 3, pp. 147–152. IEEE (1992) Reed, R., Oh, S., Marks, R.: Regularization using jittered training data. In: IJCNN, vol. 3, pp. 147–152. IEEE (1992)
44.
Zurück zum Zitat Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: explicit invariance during feature extraction. In: ICML (2011) Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: explicit invariance during feature extraction. In: ICML (2011)
45.
Zurück zum Zitat Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In: NIPS (2016) Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In: NIPS (2016)
46.
Zurück zum Zitat Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approximate Reasoning 50(7), 969–978 (2009)CrossRef Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approximate Reasoning 50(7), 969–978 (2009)CrossRef
47.
Zurück zum Zitat Springenberg, J.T.: Unsupervised and semi-supervised learning with categorical generative adversarial networks. In: ICLR (2015) Springenberg, J.T.: Unsupervised and semi-supervised learning with categorical generative adversarial networks. In: ICLR (2015)
48.
Zurück zum Zitat Tokui, S., Oono, K., Hido, S., Clayton, J.: Chainer: a next-generation open source framework for deep learning. In: NIPS Workshop on Machine Learning Systems (LearningSys) (2015) Tokui, S., Oono, K., Hido, S., Clayton, J.: Chainer: a next-generation open source framework for deep learning. In: NIPS Workshop on Machine Learning Systems (LearningSys) (2015)
49.
Zurück zum Zitat Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–1970 (2008)CrossRef Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–1970 (2008)CrossRef
50.
Zurück zum Zitat Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: ICML (2008) Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: ICML (2008)
51.
Zurück zum Zitat Wang, J., Liu, W., Kumar, S., Chang, S.F.: Learning to hash for indexing big data–a survey. Proc. IEEE 104(1), 34–57 (2016)CrossRef Wang, J., Liu, W., Kumar, S., Chang, S.F.: Learning to hash for indexing big data–a survey. Proc. IEEE 104(1), 34–57 (2016)CrossRef
52.
Zurück zum Zitat Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS (2009) Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS (2009)
53.
Zurück zum Zitat Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Supervised hashing for image retrieval via image representation learning. In: AAAI (2014) Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Supervised hashing for image retrieval via image representation learning. In: AAAI (2014)
54.
Zurück zum Zitat Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: ICML (2016) Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: ICML (2016)
55.
Zurück zum Zitat Xu, J., et al.: Convolutional neural networks for text hashing. In: IJCAI (2015) Xu, J., et al.: Convolutional neural networks for text hashing. In: IJCAI (2015)
56.
Zurück zum Zitat Xu, L., Neufeld, J., Larson, B., Schuurmans, D.: Maximum margin clustering. In: NIPS (2004) Xu, L., Neufeld, J., Larson, B., Schuurmans, D.: Maximum margin clustering. In: NIPS (2004)
57.
Zurück zum Zitat Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: NIPS (2004) Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: NIPS (2004)
58.
Zurück zum Zitat Zhang, R., Lin, L., Zhang, R., Zuo, W., Zhang, L.: Bit-scalable deep hashing with regularized similarity learning for image retrieval and person re-identification. IEEE Trans. Image Process. 24(12), 4766–4779 (2015)MathSciNetCrossRef Zhang, R., Lin, L., Zhang, R., Zuo, W., Zhang, L.: Bit-scalable deep hashing with regularized similarity learning for image retrieval and person re-identification. IEEE Trans. Image Process. 24(12), 4766–4779 (2015)MathSciNetCrossRef
59.
Zurück zum Zitat Zheng, Y., Tan, H., Tang, B., Zhou, H., et al.: Variational deep embedding: a generative approach to clustering. arXiv preprint arXiv:1611.05148 (2016) Zheng, Y., Tan, H., Tang, B., Zhou, H., et al.: Variational deep embedding: a generative approach to clustering. arXiv preprint arXiv:​1611.​05148 (2016)
60.
Zurück zum Zitat Zhou, Z.H.: A brief introduction to weakly supervised learning. Nat. Sci. Rev. 5(1), 44–53 (2017)CrossRef Zhou, Z.H.: A brief introduction to weakly supervised learning. Nat. Sci. Rev. 5(1), 44–53 (2017)CrossRef
Metadaten
Titel
Unsupervised Discrete Representation Learning
verfasst von
Weihua Hu
Takeru Miyato
Seiya Tokui
Eiichi Matsumoto
Masashi Sugiyama
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-28954-6_6

Premium Partner