Skip to main content

2018 | OriginalPaper | Buchkapitel

Upper Limb Rehabilitation Robotic System Requirements Analysis

verfasst von : Dorin Popescu, Florin Manta, Ligia Rusu, Taina Elena Avramescu, Mihaela Zavaleanu

Erschienen in: Advances in Service and Industrial Robotics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper presents the need for upper limb rehabilitation and gives one possible solution with rehabilitation robotics. The research objectives, medical and technical requirements analysis for an upper limb rehabilitation robotic system are presented. Designing a usable upper limb rehabilitation robotic system must address the needs of its users.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fanin C, Gallina P, Rossi A, Zanatta U, Masiero S (2003) Nerebot: a wire-based robot for neurorehabilitation. In: Proceedings of the IEEE 8th International Conference on Rehabilitation Robotics, ICORR 2003, Daejeon, Republic of Korea Fanin C, Gallina P, Rossi A, Zanatta U, Masiero S (2003) Nerebot: a wire-based robot for neurorehabilitation. In: Proceedings of the IEEE 8th International Conference on Rehabilitation Robotics, ICORR 2003, Daejeon, Republic of Korea
2.
Zurück zum Zitat Rosati G, Gallina P, Masiero S, Rossi A (2005) Design of a new 5 d.o.f. wire-based robot for rehabilitation. In: Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Chicago, USA, pp 430–433 Rosati G, Gallina P, Masiero S, Rossi A (2005) Design of a new 5 d.o.f. wire-based robot for rehabilitation. In: Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Chicago, USA, pp 430–433
3.
Zurück zum Zitat Nef T, Mihelj M, Colombo G, Riener R (2006) ARMin – robot for rehabilitation of the upper extremities. In: IEEE Conference on Robotics and Automation, ICRA, pp 3152–3157 Nef T, Mihelj M, Colombo G, Riener R (2006) ARMin – robot for rehabilitation of the upper extremities. In: IEEE Conference on Robotics and Automation, ICRA, pp 3152–3157
4.
Zurück zum Zitat Balasubramanian S, Wei R, Perez M, Shepard B, Koeneman E, Koeneman J, He J (2008) RUPERT: An exoskeleton robot for assisting rehabilitation of arm functions. In: Virtual Rehabilitation Conference Proceedings, pp 163–167 Balasubramanian S, Wei R, Perez M, Shepard B, Koeneman E, Koeneman J, He J (2008) RUPERT: An exoskeleton robot for assisting rehabilitation of arm functions. In: Virtual Rehabilitation Conference Proceedings, pp 163–167
5.
Zurück zum Zitat Haumont T, Rahman T, Sample W, King M, Church C, Henley J, Jayakumar S (2011) Wilmington robotic exoskeleton: a novel device to maintain arm improvement in muscular disease. J Pediatr Orthop 31(5):e44-9CrossRef Haumont T, Rahman T, Sample W, King M, Church C, Henley J, Jayakumar S (2011) Wilmington robotic exoskeleton: a novel device to maintain arm improvement in muscular disease. J Pediatr Orthop 31(5):e44-9CrossRef
6.
Zurück zum Zitat Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC (2008) Robot based hand motor therapy after stroke. Brain 131(2):425–437CrossRef Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC (2008) Robot based hand motor therapy after stroke. Brain 131(2):425–437CrossRef
7.
Zurück zum Zitat Rocon E., Ruiz AF, Ponce JL (2005) Rehabilitation robotics: a wearable exo-skeleton for tremor assessment and suppression. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp 2271–2276 Rocon E., Ruiz AF, Ponce JL (2005) Rehabilitation robotics: a wearable exo-skeleton for tremor assessment and suppression. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp 2271–2276
8.
Zurück zum Zitat Rosen J, Perry JC, Manning N, Burns S, Hannaford B (2005) The human arm kinematics and dynamics during daily activities – toward a 7 DOF upper limb powered exoskeleton. In: IEEE Proceedings of the 12th International Conference on Advanced Robotics, pp 532–539 Rosen J, Perry JC, Manning N, Burns S, Hannaford B (2005) The human arm kinematics and dynamics during daily activities – toward a 7 DOF upper limb powered exoskeleton. In: IEEE Proceedings of the 12th International Conference on Advanced Robotics, pp 532–539
9.
Zurück zum Zitat Tsagarakis NG, Caldwell DG (2003) Development and control of a physiotherapy and training exercise facility for the upper limb using soft actuators. In: Proceedings of IEEE International Conference on Advanced Robotics, Portugal, pp 1080–1085 Tsagarakis NG, Caldwell DG (2003) Development and control of a physiotherapy and training exercise facility for the upper limb using soft actuators. In: Proceedings of IEEE International Conference on Advanced Robotics, Portugal, pp 1080–1085
10.
Zurück zum Zitat Gopura R, Kiguchi K (2009) SUEFUL-7: a 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), St. Louis, USA Gopura R, Kiguchi K (2009) SUEFUL-7: a 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), St. Louis, USA
11.
Zurück zum Zitat Garrido J, Yu W, Soria A (2014) Modular design and modeling of an upper limb exoskeleton. In: Proceedings of the 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), São Paulo, Brazil, pp 508–513 Garrido J, Yu W, Soria A (2014) Modular design and modeling of an upper limb exoskeleton. In: Proceedings of the 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), São Paulo, Brazil, pp 508–513
12.
Zurück zum Zitat Carignan C, Liszka M, RoderickS (2005) Design of an arm exoskeleton with scapula motion for shoulder rehabilitation. In: Proceedings of the International Conference on Advanced Robotics, ICAR 2005, pp 524–531 Carignan C, Liszka M, RoderickS (2005) Design of an arm exoskeleton with scapula motion for shoulder rehabilitation. In: Proceedings of the International Conference on Advanced Robotics, ICAR 2005, pp 524–531
13.
Zurück zum Zitat Tsagarakis NG, Caldwell D (2003) Development and control of a “soft-actuated” exoskeleton for use in physiotherapy and training. Auton Robots 15:21–33CrossRef Tsagarakis NG, Caldwell D (2003) Development and control of a “soft-actuated” exoskeleton for use in physiotherapy and training. Auton Robots 15:21–33CrossRef
14.
Zurück zum Zitat Gupta A, O’Malley M (2006) Design of a haptic arm exoskeleton for training and rehabilitation. IEEE/ASME Trans Mechatron 11(3):280–289CrossRef Gupta A, O’Malley M (2006) Design of a haptic arm exoskeleton for training and rehabilitation. IEEE/ASME Trans Mechatron 11(3):280–289CrossRef
15.
Zurück zum Zitat Mao Y, Jin X, Dutta GG, Scholz JP, Agrawal SK (2015) Human movement training with a Cable Driven ARm EXoskeleton (CAREX). IEEE Trans Neural Syst Rehabil Eng 23(1):84–92CrossRef Mao Y, Jin X, Dutta GG, Scholz JP, Agrawal SK (2015) Human movement training with a Cable Driven ARm EXoskeleton (CAREX). IEEE Trans Neural Syst Rehabil Eng 23(1):84–92CrossRef
16.
Zurück zum Zitat Copilusi C, Ceccarelli M (2015) An application of LARM clutched arm for assisting disabled people. Int J Mech Control 16(1):57–66 Copilusi C, Ceccarelli M (2015) An application of LARM clutched arm for assisting disabled people. Int J Mech Control 16(1):57–66
17.
Zurück zum Zitat Holtzblatt K, Wendell JB, Wood S (2004) Rapid Contextual Design: A How-to Guide to Key Techniques for User-Centered Design. Morgan Kaufmann Publishers, San Francisco Holtzblatt K, Wendell JB, Wood S (2004) Rapid Contextual Design: A How-to Guide to Key Techniques for User-Centered Design. Morgan Kaufmann Publishers, San Francisco
18.
Zurück zum Zitat Schuler D, Namioka A (1993) Participatory Design: Principles and Practices. Lawrence Erlbaum Associates, Hillsdale Schuler D, Namioka A (1993) Participatory Design: Principles and Practices. Lawrence Erlbaum Associates, Hillsdale
19.
Zurück zum Zitat Davidson I, Waters K (2000) Physiotherapists working with stroke patients: a national survey. Physiotherapy 86(2):69–80CrossRef Davidson I, Waters K (2000) Physiotherapists working with stroke patients: a national survey. Physiotherapy 86(2):69–80CrossRef
20.
Zurück zum Zitat Lennon S (2003) Physiotherapy practice in stroke rehabilitation: a survey. Disab Rehabil 25(9):455–461CrossRef Lennon S (2003) Physiotherapy practice in stroke rehabilitation: a survey. Disab Rehabil 25(9):455–461CrossRef
21.
Zurück zum Zitat Stanger CA, Anglin C, Harwin WS, Romilly DP (1994) Devices for assisting manipulation: a summary of user task priorities. IEEE Trans Rehabil Eng 2(4):256–265CrossRef Stanger CA, Anglin C, Harwin WS, Romilly DP (1994) Devices for assisting manipulation: a summary of user task priorities. IEEE Trans Rehabil Eng 2(4):256–265CrossRef
22.
Zurück zum Zitat Natarajan P, Oelschlager A, Agah A, Phol PS, Ahmad SO, Liu W (2008) Current clinical practices in stroke rehabilitation: Regional pilot survey. J Rehabil Res Dev 45(6):841–850CrossRef Natarajan P, Oelschlager A, Agah A, Phol PS, Ahmad SO, Liu W (2008) Current clinical practices in stroke rehabilitation: Regional pilot survey. J Rehabil Res Dev 45(6):841–850CrossRef
23.
Zurück zum Zitat Lee M, Rittenhouse M, Abdullah HA (2005) Design issues for therapeutic robot systems: results from a survey of physiotherapists. J Intell Rob Syst 42(3):239–252CrossRef Lee M, Rittenhouse M, Abdullah HA (2005) Design issues for therapeutic robot systems: results from a survey of physiotherapists. J Intell Rob Syst 42(3):239–252CrossRef
24.
Zurück zum Zitat Lindsay M, Gubitz G, Bayley M, Hill M, Davies-Schinkel C, Phillips S (2010) Canadian Best Practice Recommendations for Stroke Care, Ottawa, Ontario, Canada Lindsay M, Gubitz G, Bayley M, Hill M, Davies-Schinkel C, Phillips S (2010) Canadian Best Practice Recommendations for Stroke Care, Ottawa, Ontario, Canada
25.
Zurück zum Zitat National Stroke Foundation (2005) Clinical Guidelines for Stroke Rehabilitation and Recovery. NSF, Melbourne National Stroke Foundation (2005) Clinical Guidelines for Stroke Rehabilitation and Recovery. NSF, Melbourne
Metadaten
Titel
Upper Limb Rehabilitation Robotic System Requirements Analysis
verfasst von
Dorin Popescu
Florin Manta
Ligia Rusu
Taina Elena Avramescu
Mihaela Zavaleanu
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-61276-8_98

Neuer Inhalt