Skip to main content

2017 | OriginalPaper | Buchkapitel

Using a Controlled Sail and Tail to Steer an Autonomous Sailboat

verfasst von : Thomas Augenstein, Arjan Singh, Jesse Miller, Alex Pomerenk, Alec Dean, Andy Ruina

Erschienen in: Robotic Sailing 2016

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We are designing a cheap, mass producible 1 m semi-autonomous robotic sailboat that can navigate the oceans for months using only intermittent external supervision. The boat should efficiently collect environmental data such as salinity, turbidity, fluorescence, and animal sounds. The boat has a symmetric airfoil sail, a thin, bulbed keel, and most notably, an apparently new means of steering: a tail-vane rudder replacing the water rudder. The tail-vane rudder is to the main sail as an elevator is to the wing on an airplane, controlling both the angle-of-attack of the wing and the vehicle orientation. The angle-of-attack of the main wing is set by the tail-vane rudder, and the direction of the boat relative to the wind is set by the mast-rotation motor; the tail-vane rudder turns the boat. 2D and 3D dynamic simulations indicate that the tail-vane rudder design yields both (1) a stable wing angle-of-attack (like other wing-sail boats with hinged main sails); and also (2) boat directional stability relative to the wind (like boats with auto-steer wind-vanes). With fixed control-surface angles, the boat finds and maintains a stable heading, regardless of initial conditions. This directional stability allows the boat to operate intermittently with neither electrical power nor a complex wind-vane, thus reducing demands on batteries and solar cells. Tests show that in light winds the boat can sail stably within approximately \(\pm 45^{\circ }\) of the wind direction. Because of the air tail-vane-, instead of water-, rudder, the boat requires new tacking techniques which we are currently developing. As predicted by 3D simulations, experiments show that in heavy winds the boat has an oscillatory instability. It then finds a stable backwards sailing mode. We have yet-untested ideas for correcting this high-wind instability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Udaya Shankar, N.: Reminiscing Rad. J. Astrophys. Astron. 32 615 (2011). (Obituary of CV Radhakrishnan, see figure 4 on page 619 for picture of Radhakrishnan’s wing-sail boat Eldemer in 2005) Udaya Shankar, N.: Reminiscing Rad. J. Astrophys. Astron. 32 615 (2011). (Obituary of CV Radhakrishnan, see figure 4 on page 619 for picture of Radhakrishnan’s wing-sail boat Eldemer in 2005)
8.
Zurück zum Zitat Elkaim, G.H.: Autonomous surface vehicle free-rotating wingsail section design and configuration analysis. J. Aircr. 45(6), 1835–1852 (2008)CrossRef Elkaim, G.H.: Autonomous surface vehicle free-rotating wingsail section design and configuration analysis. J. Aircr. 45(6), 1835–1852 (2008)CrossRef
11.
Zurück zum Zitat Sakurai, A., Nakamura, T., Nakamoto, Y.: Experimental Study of a Directionally Stable Sailing Vehicle With a Free-Raking Rig and a Self-Trimming Sail. The 16th Chesapeake Sailing Yacht Symposium (2003) Sakurai, A., Nakamura, T., Nakamoto, Y.: Experimental Study of a Directionally Stable Sailing Vehicle With a Free-Raking Rig and a Self-Trimming Sail. The 16th Chesapeake Sailing Yacht Symposium (2003)
12.
Zurück zum Zitat Lanchester, F.W.: Aerodonetics: Constituting the Second Volume of a Complete Work on Aerial Flight. Van Nostrand (1909) Lanchester, F.W.: Aerodonetics: Constituting the Second Volume of a Complete Work on Aerial Flight. Van Nostrand (1909)
13.
Zurück zum Zitat Miller, J.: A Directionally Stable Robotic Sailboat: Concept and Simulations, M-Eng thesis, Mechanical Engineering, Cornell University, April 2016. (preparation for the the Journal of Sailboat Technology) Miller, J.: A Directionally Stable Robotic Sailboat: Concept and Simulations, M-Eng thesis, Mechanical Engineering, Cornell University, April 2016. (preparation for the the Journal of Sailboat Technology)
14.
Zurück zum Zitat Mystic Seaport Museum (2016) Luja Line Plans Mystic Seaport Museum (2016) Luja Line Plans
Metadaten
Titel
Using a Controlled Sail and Tail to Steer an Autonomous Sailboat
verfasst von
Thomas Augenstein
Arjan Singh
Jesse Miller
Alex Pomerenk
Alec Dean
Andy Ruina
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-45453-5_8

Neuer Inhalt