Skip to main content
Erschienen in:
Buchtitelbild

2021 | OriginalPaper | Buchkapitel

Vapor–Liquid–Solid Growth of Semiconductor Nanowires

verfasst von : Vladimir G. Dubrovskii, Frank Glas

Erschienen in: Fundamental Properties of Semiconductor Nanowires

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We discuss the growth of semiconductor nanowires, with an emphasis on the vapor–liquid–solid growth of III–V nanowires. Special attention is paid to modeling of growth and the resulting morphology, crystal phase, composition, nanowire heterostructures, and statistical properties within the nanowire ensembles. We give a general overview of the vapor–liquid–solid growth of nanowires by different epitaxy techniques and the bases for nanowire growth modeling. We discuss the role of surface energetics in the formation of GaAs nanowires, which has an important impact on the nanowire morphology and crystal phase. A detailed description of the nanowire growth kinetics is presented, including the transport-limited growth, chemical potentials, nucleation and growth of two-dimensional islands, and self-consistent growth models combining the material transport equations with the nucleation rate. The nanowire length and diameter distributions are considered along with the methods for narrowing them to sub-Poissonian values. Ternary III–V nanowires and heterostructures based on such nanowires are discussed, including the relaxation of elastic stress at the free sidewalls and the sharpening of the heterointerfaces. We consider polytypism of III–V nanowires and possibilities to control their crystal phase by tuning the growth parameters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964)CrossRef R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964)CrossRef
2.
Zurück zum Zitat E.I. Givargizov, Highly Anisotropic Crystals (Springer, 1987) E.I. Givargizov, Highly Anisotropic Crystals (Springer, 1987)
3.
Zurück zum Zitat A. Zhang, G. Zheng, C.M. Lieber, Nanowires: Building Blocks for Nanoscience and Nanotechnology (Springer, 2016) A. Zhang, G. Zheng, C.M. Lieber, Nanowires: Building Blocks for Nanoscience and Nanotechnology (Springer, 2016)
4.
Zurück zum Zitat P. Yang, P.R. Yan, M. Fardy, Semiconductor nanowires: what’s next? Nano Lett. 10, 1529–1536 (2010)CrossRef P. Yang, P.R. Yan, M. Fardy, Semiconductor nanowires: what’s next? Nano Lett. 10, 1529–1536 (2010)CrossRef
5.
Zurück zum Zitat W. Seifert, M. Borgström, K. Deppert, K.A. Dick, J. Johansson, M.W. Larsson, T. Mårtensson, N. Sköld, C.P.T. Svensson, B.A. Wacaser, L.R. Wallenberg, L. Samuelson, Growth of one-dimensional nanostructures in MOVPE. J. Cryst. Growth 272, 211–220 (2004)CrossRef W. Seifert, M. Borgström, K. Deppert, K.A. Dick, J. Johansson, M.W. Larsson, T. Mårtensson, N. Sköld, C.P.T. Svensson, B.A. Wacaser, L.R. Wallenberg, L. Samuelson, Growth of one-dimensional nanostructures in MOVPE. J. Cryst. Growth 272, 211–220 (2004)CrossRef
6.
Zurück zum Zitat V.G. Dubrovskii, Nucleation Theory and Growth of Nanostructures (Springer, 2014) V.G. Dubrovskii, Nucleation Theory and Growth of Nanostructures (Springer, 2014)
7.
Zurück zum Zitat V.G. Dubrovskii, Theory of VLS growth of compound semiconductors, in Semiconductors and Semimetals, vol. 93, ed. by A. Fontcuberta i Morral, S.A. Dayeh, C. Jagadish (Burlington, Academic Press, 2015), pp. 1–78 V.G. Dubrovskii, Theory of VLS growth of compound semiconductors, in Semiconductors and Semimetals, vol. 93, ed. by A. Fontcuberta i Morral, S.A. Dayeh, C. Jagadish (Burlington, Academic Press, 2015), pp. 1–78
8.
Zurück zum Zitat F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 74, 121302R (2006)CrossRef F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 74, 121302R (2006)CrossRef
9.
Zurück zum Zitat X. Zhang, V.G. Dubrovskii, N.V. Sibirev, X. Ren, Analytical study of elastic relaxation and plastic deformation in nanostructures on lattice mismatched substrates. Cryst. Growth Des. 11, 5441–5448 (2011)CrossRef X. Zhang, V.G. Dubrovskii, N.V. Sibirev, X. Ren, Analytical study of elastic relaxation and plastic deformation in nanostructures on lattice mismatched substrates. Cryst. Growth Des. 11, 5441–5448 (2011)CrossRef
10.
Zurück zum Zitat F. Glas, Strain in nanowires and nanowire heterostructures, in Semiconductors and Semimetals, vol. 93, ed. by A. Fontcuberta i Morral, S.A. Dayeh, C. Jagadish (Burlington, Academic Press, 2015), pp. 79–123 F. Glas, Strain in nanowires and nanowire heterostructures, in Semiconductors and Semimetals, vol. 93, ed. by A. Fontcuberta i Morral, S.A. Dayeh, C. Jagadish (Burlington, Academic Press, 2015), pp. 79–123
11.
Zurück zum Zitat V.G. Dubrovskii, G.E. Cirlin, I.P. Soshnikov, A.A. Tonkikh, N.V. Sibirev, Yu.B. Samsonenko, V.M. Ustinov, Diffusion-induced growth of GaAs nanowhiskers: theory and experiment. Phys. Rev. B 71, 205325 (2005)CrossRef V.G. Dubrovskii, G.E. Cirlin, I.P. Soshnikov, A.A. Tonkikh, N.V. Sibirev, Yu.B. Samsonenko, V.M. Ustinov, Diffusion-induced growth of GaAs nanowhiskers: theory and experiment. Phys. Rev. B 71, 205325 (2005)CrossRef
12.
Zurück zum Zitat J.C. Harmand, G. Patriarche, N. Péré-Laperne, M.-N. Mérat-Combes, L. Travers, F. Glas, Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth. Appl. Phys. Lett. 87, 203101 (2005)CrossRef J.C. Harmand, G. Patriarche, N. Péré-Laperne, M.-N. Mérat-Combes, L. Travers, F. Glas, Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth. Appl. Phys. Lett. 87, 203101 (2005)CrossRef
13.
Zurück zum Zitat Smith, W. F.; Hashemi, J.: Foundations of materials science and engineering (4th ed.). McGraw-Hill, 2006, pp. 318–320. Smith, W. F.; Hashemi, J.: Foundations of materials science and engineering (4th ed.). McGraw-Hill, 2006, pp. 318–320.
14.
Zurück zum Zitat F. Glas, Chemical potentials for Au-assisted vapor-liquid-solid growth of III-V nanowires. J. Appl. Phys. 108, 073506 (2010)CrossRef F. Glas, Chemical potentials for Au-assisted vapor-liquid-solid growth of III-V nanowires. J. Appl. Phys. 108, 073506 (2010)CrossRef
15.
Zurück zum Zitat H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, Y. Kim, M.A. Fickenscher, S. Perera, T.B. Hoang, L.M. Smith, H.E. Jackson, J.M. Yarrison-Rice, X. Zhang, J. Zou, Unexpected benefits of rapid growth rate for III–V nanowires. Nano Lett. 9, 695–701 (2009)CrossRef H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, Y. Kim, M.A. Fickenscher, S. Perera, T.B. Hoang, L.M. Smith, H.E. Jackson, J.M. Yarrison-Rice, X. Zhang, J. Zou, Unexpected benefits of rapid growth rate for III–V nanowires. Nano Lett. 9, 695–701 (2009)CrossRef
16.
Zurück zum Zitat L.C. Chuang, M. Moewe, C. Chase, N.P. Kobayashi, C. Chang-Hasnain, Critical diameter for III-V nanowires grown on lattice-mismatched substrates. Appl. Phys. Lett. 90, 043115 (2007)CrossRef L.C. Chuang, M. Moewe, C. Chase, N.P. Kobayashi, C. Chang-Hasnain, Critical diameter for III-V nanowires grown on lattice-mismatched substrates. Appl. Phys. Lett. 90, 043115 (2007)CrossRef
17.
Zurück zum Zitat N.N. Halder, A. Kelrich, Y. Kauffmann, S. Cohen, D. Ritter, Growth of wurtzite InP/GaP core-shell nanowires by metal-organic molecular beam epitaxy. J. Cryst. Growth 463, 10–13 (2017)CrossRef N.N. Halder, A. Kelrich, Y. Kauffmann, S. Cohen, D. Ritter, Growth of wurtzite InP/GaP core-shell nanowires by metal-organic molecular beam epitaxy. J. Cryst. Growth 463, 10–13 (2017)CrossRef
18.
Zurück zum Zitat E. Husanu, D. Ercolani, M. Gemmi, L. Sorba, Growth of defect-free GaP nanowires. Nanotechnology 25, 205601 (2014)CrossRef E. Husanu, D. Ercolani, M. Gemmi, L. Sorba, Growth of defect-free GaP nanowires. Nanotechnology 25, 205601 (2014)CrossRef
19.
Zurück zum Zitat M.C. Plante, R.R. LaPierre, Growth mechanisms of GaAs nanowires by gas source molecular beam epitaxy. J. Cryst. Growth 286, 394–399 (2006)CrossRef M.C. Plante, R.R. LaPierre, Growth mechanisms of GaAs nanowires by gas source molecular beam epitaxy. J. Cryst. Growth 286, 394–399 (2006)CrossRef
20.
Zurück zum Zitat E. Gil, V.G. Dubrovskii, G. Avit, Y. André, C. Leroux, K. Lekhal, J. Grecenkov, A. Trassoudaine, D. Castelluci, G. Monier, M.R. Ramdani, C. Robert-Goumet, L. Bideux, J.C. Harmand, F. Glas, Record pure zincblende phase in GaAs nanowires down to 5 nm in radius. Nano Lett. 14, 3938 (2014)CrossRef E. Gil, V.G. Dubrovskii, G. Avit, Y. André, C. Leroux, K. Lekhal, J. Grecenkov, A. Trassoudaine, D. Castelluci, G. Monier, M.R. Ramdani, C. Robert-Goumet, L. Bideux, J.C. Harmand, F. Glas, Record pure zincblende phase in GaAs nanowires down to 5 nm in radius. Nano Lett. 14, 3938 (2014)CrossRef
21.
Zurück zum Zitat T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, L. Samuelson, Nanowire arrays defined by nanoimprint lithography. Nano Lett. 4, 699–702 (2004)CrossRef T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, L. Samuelson, Nanowire arrays defined by nanoimprint lithography. Nano Lett. 4, 699–702 (2004)CrossRef
22.
Zurück zum Zitat C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, A. Fontcuberta i Morral, Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys. Rev. B 77, 155326 (2008) C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, A. Fontcuberta i Morral, Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys. Rev. B 77, 155326 (2008)
23.
Zurück zum Zitat F. Jabeen, V. Grillo, S. Rubini, F. Martelli, Self-catalyzed growth of GaAs nanowires on cleaved Si by molecular beam epitaxy. Nanotechnology 19, 275711 (2008)CrossRef F. Jabeen, V. Grillo, S. Rubini, F. Martelli, Self-catalyzed growth of GaAs nanowires on cleaved Si by molecular beam epitaxy. Nanotechnology 19, 275711 (2008)CrossRef
24.
Zurück zum Zitat S.J. Gibson, J.P. Boulanger, R.R. LaPierre, Opportunities and pitfalls in patterned self-catalyzed GaAs nanowire growth on silicon. Semicond. Sci. Technol. 28, 105025 (2013)CrossRef S.J. Gibson, J.P. Boulanger, R.R. LaPierre, Opportunities and pitfalls in patterned self-catalyzed GaAs nanowire growth on silicon. Semicond. Sci. Technol. 28, 105025 (2013)CrossRef
25.
Zurück zum Zitat G. Priante, S. Ambrosini, V.G. Dubrovskii, A. Franciosi, S. Rubini, Stopping and resuming at will the growth of GaAs nanowires. Cryst. Growth Des. 13, 3976–3984 (2013)CrossRef G. Priante, S. Ambrosini, V.G. Dubrovskii, A. Franciosi, S. Rubini, Stopping and resuming at will the growth of GaAs nanowires. Cryst. Growth Des. 13, 3976–3984 (2013)CrossRef
26.
Zurück zum Zitat M.R. Ramdani, J.C. Harmand, F. Glas, G. Patriarche, L. Travers, Arsenic pathways in self-catalyzed growth of GaAs nanowires. Cryst. Growth Des. 13, 91–96 (2013)CrossRef M.R. Ramdani, J.C. Harmand, F. Glas, G. Patriarche, L. Travers, Arsenic pathways in self-catalyzed growth of GaAs nanowires. Cryst. Growth Des. 13, 91–96 (2013)CrossRef
27.
Zurück zum Zitat V.G. Dubrovskii, G.E. Cirlin, N.V. Sibirev, F. Jabeen, J.C. Harmand, P. Werner, New mode of vapor-liquid-solid nanowire growth. Nano Lett. 11, 1247–1253 (2011)CrossRef V.G. Dubrovskii, G.E. Cirlin, N.V. Sibirev, F. Jabeen, J.C. Harmand, P. Werner, New mode of vapor-liquid-solid nanowire growth. Nano Lett. 11, 1247–1253 (2011)CrossRef
28.
Zurück zum Zitat V.G. Dubrovskii, T. Xu, A. Díaz Álvarez, G. Larrieu, S.R. Plissard, P. Caroff, F. Glas, B. Grandidier, Self-equilibration of the diameter of Ga-catalyzed GaAs nanowires. Nano Lett. 15, 5580–5584 (2015) V.G. Dubrovskii, T. Xu, A. Díaz Álvarez, G. Larrieu, S.R. Plissard, P. Caroff, F. Glas, B. Grandidier, Self-equilibration of the diameter of Ga-catalyzed GaAs nanowires. Nano Lett. 15, 5580–5584 (2015)
29.
Zurück zum Zitat F. Bastiman, H. Küpers, C. Somaschini, L. Geelhaar, Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy. Nanotechnology 27, 095601 (2016)CrossRef F. Bastiman, H. Küpers, C. Somaschini, L. Geelhaar, Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy. Nanotechnology 27, 095601 (2016)CrossRef
30.
Zurück zum Zitat E.S. Koivusalo, T.V. Hakkarainen, M. Guina, V.G. Dubrovskii, Sub-Poissonian narrowing of length distributions realized in Ga-catalyzed GaAs nanowires. Nano Lett. 17, 5350–5355 (2017)CrossRef E.S. Koivusalo, T.V. Hakkarainen, M. Guina, V.G. Dubrovskii, Sub-Poissonian narrowing of length distributions realized in Ga-catalyzed GaAs nanowires. Nano Lett. 17, 5350–5355 (2017)CrossRef
31.
Zurück zum Zitat T. Tauchnitz, Y. Berdnikov, V.G. Dubrovskii, H. Schneider, M. Helm, E. Dimakis, A simple route to synchronized nucleation of self-catalyzed GaAs nanowires on silicon for sub-Poissonian length distributions. Nanotechnology 29, 504004 (2018)CrossRef T. Tauchnitz, Y. Berdnikov, V.G. Dubrovskii, H. Schneider, M. Helm, E. Dimakis, A simple route to synchronized nucleation of self-catalyzed GaAs nanowires on silicon for sub-Poissonian length distributions. Nanotechnology 29, 504004 (2018)CrossRef
32.
Zurück zum Zitat Z. Dong, Y. André, V.G. Dubrovskii, C. Bougerol, C. Leroux, M.R. Ramdani, G. Monier, A. Trassoudaine, D. Castelluci, E. Gil, Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy. Nanotechnology 27, 455601 (2017) Z. Dong, Y. André, V.G. Dubrovskii, C. Bougerol, C. Leroux, M.R. Ramdani, G. Monier, A. Trassoudaine, D. Castelluci, E. Gil, Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy. Nanotechnology 27, 455601 (2017)
33.
Zurück zum Zitat J. Vukajlovic-Plestina, W. Kim, V.G. Dubrovskii, G. Tütüncüoğlu, M. Lagier, H. Potts, M. Friedl, A. Fontcuberta i Morral, Engineering the size distributions of ordered GaAs nanowires on silicon. Nano Lett. 17, 4101–4108 (2017) J. Vukajlovic-Plestina, W. Kim, V.G. Dubrovskii, G. Tütüncüoğlu, M. Lagier, H. Potts, M. Friedl, A. Fontcuberta i Morral, Engineering the size distributions of ordered GaAs nanowires on silicon. Nano Lett. 17, 4101–4108 (2017)
34.
Zurück zum Zitat J. Tersoff, Stable self-catalyzed growth of III–V nanowires. Nano Lett. 15, 6609–6613 (2015)CrossRef J. Tersoff, Stable self-catalyzed growth of III–V nanowires. Nano Lett. 15, 6609–6613 (2015)CrossRef
35.
Zurück zum Zitat W. Kim, V.G. Dubrovskii, J. Vukajlovic-Plestina, G. Tütüncüoglu, L. Francaviglia, L. Güniat, H. Potts, M. Friedl, J.-B. Leran, A. Fontcuberta i Morral, Bistability of contact angle and its role in achieving quantum-thin self-assisted GaAs nanowires. Nano Lett. 18, 49–57 (2018) W. Kim, V.G. Dubrovskii, J. Vukajlovic-Plestina, G. Tütüncüoglu, L. Francaviglia, L. Güniat, H. Potts, M. Friedl, J.-B. Leran, A. Fontcuberta i Morral, Bistability of contact angle and its role in achieving quantum-thin self-assisted GaAs nanowires. Nano Lett. 18, 49–57 (2018)
36.
Zurück zum Zitat E.S. Koivusalo, T.V. Hakkarainen, H.V.A. Galeti, Y.G. Gobato, V.G. Dubrovskii, M.D. Guina, Deterministic switching of the growth direction of self-catalyzed GaAs nanowires. Nano Lett. 19, 82–89 (2019)CrossRef E.S. Koivusalo, T.V. Hakkarainen, H.V.A. Galeti, Y.G. Gobato, V.G. Dubrovskii, M.D. Guina, Deterministic switching of the growth direction of self-catalyzed GaAs nanowires. Nano Lett. 19, 82–89 (2019)CrossRef
37.
Zurück zum Zitat V.G. Dubrovskii, Influence of the group V element on the chemical potential and crystal structure of Au-catalyzed III-V nanowires. Appl. Phys. Lett. 104, 053110 (2014)CrossRef V.G. Dubrovskii, Influence of the group V element on the chemical potential and crystal structure of Au-catalyzed III-V nanowires. Appl. Phys. Lett. 104, 053110 (2014)CrossRef
38.
Zurück zum Zitat F. Glas, Vapor fluxes on the apical droplet during nanowire growth by molecular beam epitaxy. Phys. Status Solidi B 247, 254–258 (2010)CrossRef F. Glas, Vapor fluxes on the apical droplet during nanowire growth by molecular beam epitaxy. Phys. Status Solidi B 247, 254–258 (2010)CrossRef
39.
Zurück zum Zitat L. Schubert, P. Werner, N.D. Zakharov, G. Gerth, F.M. Kolb, L. Long, U. Gösele, T.Y. Tan, Silicon nanowhiskers grown on <111> Si substrates by molecular beam epitaxy. Appl. Phys. Lett. 84, 4968–4970 (2004)CrossRef L. Schubert, P. Werner, N.D. Zakharov, G. Gerth, F.M. Kolb, L. Long, U. Gösele, T.Y. Tan, Silicon nanowhiskers grown on <111> Si substrates by molecular beam epitaxy. Appl. Phys. Lett. 84, 4968–4970 (2004)CrossRef
40.
Zurück zum Zitat F. Glas, M.R. Ramdani, G. Patriarche, J.C. Harmand, Predictive modeling of self-catalyzed III-V nanowire growth. Phys. Rev. B 88, 195304 (2013)CrossRef F. Glas, M.R. Ramdani, G. Patriarche, J.C. Harmand, Predictive modeling of self-catalyzed III-V nanowire growth. Phys. Rev. B 88, 195304 (2013)CrossRef
41.
Zurück zum Zitat V.G. Dubrovskii, Group V sensitive vapor-liquid-solid growth of Au-catalyzed and self-catalyzed III-V nanowires. J. Cryst. Growth 440, 62–68 (2016)CrossRef V.G. Dubrovskii, Group V sensitive vapor-liquid-solid growth of Au-catalyzed and self-catalyzed III-V nanowires. J. Cryst. Growth 440, 62–68 (2016)CrossRef
42.
Zurück zum Zitat F. Glas, J.C. Harmand, G. Patriarche, Why does wurtzite form in nanowires of III-V zinc-blende semiconductors? Phys. Rev. Lett. 99, 146101 (2007)CrossRef F. Glas, J.C. Harmand, G. Patriarche, Why does wurtzite form in nanowires of III-V zinc-blende semiconductors? Phys. Rev. Lett. 99, 146101 (2007)CrossRef
43.
Zurück zum Zitat V.G. Dubrovskii, N.V. Sibirev, Growth rate of a crystal facet of arbitrary size and the growth kinetics of vertical nanowires. Phys. Rev. E 70, 031604 (2004)CrossRef V.G. Dubrovskii, N.V. Sibirev, Growth rate of a crystal facet of arbitrary size and the growth kinetics of vertical nanowires. Phys. Rev. E 70, 031604 (2004)CrossRef
44.
Zurück zum Zitat V.G. Dubrovskii, N.V. Sibirev, J.C. Harmand, F. Glas, Growth kinetics and crystal structure of semiconductor nanowires. Phys. Rev. B 78, 235301 (2008)CrossRef V.G. Dubrovskii, N.V. Sibirev, J.C. Harmand, F. Glas, Growth kinetics and crystal structure of semiconductor nanowires. Phys. Rev. B 78, 235301 (2008)CrossRef
45.
Zurück zum Zitat D. Kashchiev, Dependence of the growth rate of nanowires on the nanowire diameter. Cryst. Growth Des. 6, 1154–1156 (2006)CrossRef D. Kashchiev, Dependence of the growth rate of nanowires on the nanowire diameter. Cryst. Growth Des. 6, 1154–1156 (2006)CrossRef
46.
Zurück zum Zitat E.K. Mårtensson, S. Lehmann, K.A. Dick, J. Johansson, Simulation of GaAs nanowire growth and crystal structure. Nano Lett. 19, 1197–1203 (2019)CrossRef E.K. Mårtensson, S. Lehmann, K.A. Dick, J. Johansson, Simulation of GaAs nanowire growth and crystal structure. Nano Lett. 19, 1197–1203 (2019)CrossRef
47.
Zurück zum Zitat C.-Y. Wen, J. Tersoff, K. Hillerich, M.C. Reuter, J.H. Park, S. Kodambaka, E.A. Stach, F.M. Ross, Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires. Phys. Rev. Lett. 107, 025503 (2011)CrossRef C.-Y. Wen, J. Tersoff, K. Hillerich, M.C. Reuter, J.H. Park, S. Kodambaka, E.A. Stach, F.M. Ross, Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires. Phys. Rev. Lett. 107, 025503 (2011)CrossRef
48.
Zurück zum Zitat D. Jacobsson, F. Panciera, J. Tersoff, M.C. Reuter, S. Lehmann, S. Hofmann, K.A. Dick, F.M. Ross, Interface dynamics and crystal phase switching in GaAs nanowires. Nature 531, 317–322 (2016)CrossRef D. Jacobsson, F. Panciera, J. Tersoff, M.C. Reuter, S. Lehmann, S. Hofmann, K.A. Dick, F.M. Ross, Interface dynamics and crystal phase switching in GaAs nanowires. Nature 531, 317–322 (2016)CrossRef
49.
Zurück zum Zitat J.C. Harmand, G. Patriarche, F. Glas, F. Panciera, I. Florea, J.-L. Maurice, L. Travers, Y. Ollivier, Atomic step flow on a nanofacet. Phys. Rev. Lett. 121, 166101 (2018)CrossRef J.C. Harmand, G. Patriarche, F. Glas, F. Panciera, I. Florea, J.-L. Maurice, L. Travers, Y. Ollivier, Atomic step flow on a nanofacet. Phys. Rev. Lett. 121, 166101 (2018)CrossRef
50.
Zurück zum Zitat V.G. Dubrovskii, J. Grecenkov, Zeldovich nucleation rate, self-consistency renormalization, and crystal phase of Au-catalyzed GaAs nanowires. Cryst. Growth Des. 15, 340–347 (2015)CrossRef V.G. Dubrovskii, J. Grecenkov, Zeldovich nucleation rate, self-consistency renormalization, and crystal phase of Au-catalyzed GaAs nanowires. Cryst. Growth Des. 15, 340–347 (2015)CrossRef
51.
Zurück zum Zitat A.S. Ameruddin, P. Caroff, H.H. Tan, C. Jagadish, V.G. Dubrovskii, Understanding the growth and composition evolution of gold-seeded ternary InGaAs nanowires. Nanoscale 7, 16266 (2015)CrossRef A.S. Ameruddin, P. Caroff, H.H. Tan, C. Jagadish, V.G. Dubrovskii, Understanding the growth and composition evolution of gold-seeded ternary InGaAs nanowires. Nanoscale 7, 16266 (2015)CrossRef
52.
Zurück zum Zitat V.G. Dubrovskii, Fully analytical description for the composition of ternary vapor-liquid-solid nanowires. Cryst. Growth Des. 15, 5738–5743 (2015)CrossRef V.G. Dubrovskii, Fully analytical description for the composition of ternary vapor-liquid-solid nanowires. Cryst. Growth Des. 15, 5738–5743 (2015)CrossRef
53.
Zurück zum Zitat V.G. Dubrovskii, N.V. Sibirev, Factors influencing the interfacial abruptness in axial III-V nanowire heterostructures. Cryst. Growth Des. 16, 2019–2023 (2016)CrossRef V.G. Dubrovskii, N.V. Sibirev, Factors influencing the interfacial abruptness in axial III-V nanowire heterostructures. Cryst. Growth Des. 16, 2019–2023 (2016)CrossRef
54.
Zurück zum Zitat V.G. Dubrovskii, Compositional control of gold-catalyzed ternary nanowires and axial nanowire heterostructures based on IIIP1−xAsx. J. Cryst. Growth 498, 179–185 (2018)CrossRef V.G. Dubrovskii, Compositional control of gold-catalyzed ternary nanowires and axial nanowire heterostructures based on IIIP1xAsx. J. Cryst. Growth 498, 179–185 (2018)CrossRef
55.
Zurück zum Zitat V.G. Dubrovskii, Zh.V. Sokolova, M.V. Rylkova, A.A. Zhiglinsky, Composition and contact angle of Au-III-V droplets on top of Au-catalyzed III-V nanowires. Materials Physics and Mechanics 36, 1–7 (2018) V.G. Dubrovskii, Zh.V. Sokolova, M.V. Rylkova, A.A. Zhiglinsky, Composition and contact angle of Au-III-V droplets on top of Au-catalyzed III-V nanowires. Materials Physics and Mechanics 36, 1–7 (2018)
56.
Zurück zum Zitat V.A. Nebol’sin, A.A. Shchetinin, Role of surface energy in the vapor–liquid–solid growth of silicon. Inorg. Mater. 39, 899–903 (2003) V.A. Nebol’sin, A.A. Shchetinin, Role of surface energy in the vapor–liquid–solid growth of silicon. Inorg. Mater. 39, 899–903 (2003)
57.
Zurück zum Zitat F.M. Ross, J. Tersoff, M.C. Reuter, Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 95, 146104 (2005)CrossRef F.M. Ross, J. Tersoff, M.C. Reuter, Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 95, 146104 (2005)CrossRef
58.
Zurück zum Zitat V.G. Dubrovskii, Development of growth theory for vapor-liquid-solid nanowires: contact angle, truncated facets and crystal phase. Cryst. Growth Des. 17, 2544–2548 (2017)CrossRef V.G. Dubrovskii, Development of growth theory for vapor-liquid-solid nanowires: contact angle, truncated facets and crystal phase. Cryst. Growth Des. 17, 2544–2548 (2017)CrossRef
59.
Zurück zum Zitat V. Zannier, F. Rossi, V.G. Dubrovskii, D. Ercolani, S. Battiato, L. Sorba, Nanoparticle stability in axial InAs−InP nanowire heterostructures with atomically sharp interfaces. Nano Lett. 18, 167–174 (2018)CrossRef V. Zannier, F. Rossi, V.G. Dubrovskii, D. Ercolani, S. Battiato, L. Sorba, Nanoparticle stability in axial InAs−InP nanowire heterostructures with atomically sharp interfaces. Nano Lett. 18, 167–174 (2018)CrossRef
60.
Zurück zum Zitat J. Johansson, L.S. Karlsson, K.A. Dick, J. Bolinsson, B.A. Wacaser, K. Deppert, L. Samuelson, Effects of supersaturation on the crystal structure of gold seeded III–V nanowires. Cryst. Growth Des. 9, 766–773 (2009)CrossRef J. Johansson, L.S. Karlsson, K.A. Dick, J. Bolinsson, B.A. Wacaser, K. Deppert, L. Samuelson, Effects of supersaturation on the crystal structure of gold seeded III–V nanowires. Cryst. Growth Des. 9, 766–773 (2009)CrossRef
61.
Zurück zum Zitat F. Panciera, Z. Baraissov, G. Patriarche, V.G. Dubrovskii, F. Glas, L. Travers, U. Mirsaidov, J.-C. Harmand, Phase selection in self-catalyzed GaAs nanowires. Nano Lett. 20, 1669–1675 (2020)CrossRef F. Panciera, Z. Baraissov, G. Patriarche, V.G. Dubrovskii, F. Glas, L. Travers, U. Mirsaidov, J.-C. Harmand, Phase selection in self-catalyzed GaAs nanowires. Nano Lett. 20, 1669–1675 (2020)CrossRef
62.
Zurück zum Zitat V. Pankoke, P. Kratzer, S. Sakong, Calculation of the diameter-dependent polytypism in GaAs nanowires from an atomic motif expansion of the formation energy. Phys. Rev. B 84, 075455 (2011)CrossRef V. Pankoke, P. Kratzer, S. Sakong, Calculation of the diameter-dependent polytypism in GaAs nanowires from an atomic motif expansion of the formation energy. Phys. Rev. B 84, 075455 (2011)CrossRef
63.
Zurück zum Zitat M. Rosini, R. Magri, Surface effects on the atomic and electronic structure of unpassivated GaAs nanowires. ACS Nano 4, 6021–6031 (2010)CrossRef M. Rosini, R. Magri, Surface effects on the atomic and electronic structure of unpassivated GaAs nanowires. ACS Nano 4, 6021–6031 (2010)CrossRef
64.
Zurück zum Zitat N. Moll, A. Kley, E. Pehlke, M. Scheffler, GaAs equilibrium crystal shape from first principles. Phys. Rev. B 54, 8844–8855 (1996)CrossRef N. Moll, A. Kley, E. Pehlke, M. Scheffler, GaAs equilibrium crystal shape from first principles. Phys. Rev. B 54, 8844–8855 (1996)CrossRef
65.
Zurück zum Zitat V.G. Dubrovskii, N.V. Sibirev, G.E. Cirlin, I.P. Soshnikov, W.H. Chen, R. Larde, E. Cadel, P. Pareige, T. Xu, B. Grandidier, J.-P. Nys, D. Stievenard, M. Moewe, L.C. Chuang, C. Chang-Hasnain, Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP and GaAs nanowires. Phys. Rev. B 79, 205316 (2009)CrossRef V.G. Dubrovskii, N.V. Sibirev, G.E. Cirlin, I.P. Soshnikov, W.H. Chen, R. Larde, E. Cadel, P. Pareige, T. Xu, B. Grandidier, J.-P. Nys, D. Stievenard, M. Moewe, L.C. Chuang, C. Chang-Hasnain, Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP and GaAs nanowires. Phys. Rev. B 79, 205316 (2009)CrossRef
66.
Zurück zum Zitat P. Mohan, J. Motohisa, T. Fukui, Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays. Nanotechnology 16, 2903 (2005)CrossRef P. Mohan, J. Motohisa, T. Fukui, Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays. Nanotechnology 16, 2903 (2005)CrossRef
67.
Zurück zum Zitat K. Tomioka, P. Mohan, J. Noborisaka, S. Hara, J. Motohisa, T. Fukui, Growth of highly uniform InAs nanowire arrays by selective-area MOVPE. J. Cryst. Growth 298, 644–647 (2007)CrossRef K. Tomioka, P. Mohan, J. Noborisaka, S. Hara, J. Motohisa, T. Fukui, Growth of highly uniform InAs nanowire arrays by selective-area MOVPE. J. Cryst. Growth 298, 644–647 (2007)CrossRef
68.
Zurück zum Zitat D. Dalacu, A. Kam, D.G. Austing, X. Wu, J. Lapointe, G.C. Aers, P.J. Poole, Selective-area vapour–liquid–solid growth of InP nanowires. Nanotechnology 20, 395602 (2009)CrossRef D. Dalacu, A. Kam, D.G. Austing, X. Wu, J. Lapointe, G.C. Aers, P.J. Poole, Selective-area vapour–liquid–solid growth of InP nanowires. Nanotechnology 20, 395602 (2009)CrossRef
69.
Zurück zum Zitat S. Hertenberger, D. Rudolph, M. Bichler, J.J. Finley, G. Abstreiter, G. Koblmüller, Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy. J. Appl. Phys. 108, 114316 (2010) S. Hertenberger, D. Rudolph, M. Bichler, J.J. Finley, G. Abstreiter, G. Koblmüller, Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy. J. Appl. Phys. 108, 114316 (2010)
70.
Zurück zum Zitat K.P. Bassett, P.K. Mohseni, X. Li, Evolution of GaAs nanowire geometry in selective area epitaxy. Appl. Phys. Lett. 106, 133102 (2015)CrossRef K.P. Bassett, P.K. Mohseni, X. Li, Evolution of GaAs nanowire geometry in selective area epitaxy. Appl. Phys. Lett. 106, 133102 (2015)CrossRef
71.
Zurück zum Zitat M. Robson, K.M. Azizur-Rahman, D. Parent, P. Wojdylo, D.A. Thompson, R.R. LaPierre, Multispectral absorptance from large-diameter InAsSb nanowire arrays in a single epitaxial growth on silicon. Nano Futures 1, 035001 (2017)CrossRef M. Robson, K.M. Azizur-Rahman, D. Parent, P. Wojdylo, D.A. Thompson, R.R. LaPierre, Multispectral absorptance from large-diameter InAsSb nanowire arrays in a single epitaxial growth on silicon. Nano Futures 1, 035001 (2017)CrossRef
72.
Zurück zum Zitat M.T. Robson, V.G. Dubrovskii, R.R. LaPierre, Conditions for high yield of selective-area epitaxy InAs nanowires on SiOx/Si(111) substrates. Nanotechnology 26, 465301 (2015)CrossRef M.T. Robson, V.G. Dubrovskii, R.R. LaPierre, Conditions for high yield of selective-area epitaxy InAs nanowires on SiOx/Si(111) substrates. Nanotechnology 26, 465301 (2015)CrossRef
73.
Zurück zum Zitat Q. Gao, V.G. Dubrovskii, P. Caroff, J. Wong-Leung, L. Li, Y. Guo, L. Fu, H.H. Tan, C. Jagadish, Simultaneous selective-area and vapor-liquid-solid growth of InP nanowire arrays. Nano Lett. 16, 4361–4367 (2016)CrossRef Q. Gao, V.G. Dubrovskii, P. Caroff, J. Wong-Leung, L. Li, Y. Guo, L. Fu, H.H. Tan, C. Jagadish, Simultaneous selective-area and vapor-liquid-solid growth of InP nanowire arrays. Nano Lett. 16, 4361–4367 (2016)CrossRef
74.
Zurück zum Zitat V.G. Dubrovskii, Evolution of the length and radius of III-V nanowires grown by selective area epitaxy. ACS Omega 4, 8400–8405 (2019)CrossRef V.G. Dubrovskii, Evolution of the length and radius of III-V nanowires grown by selective area epitaxy. ACS Omega 4, 8400–8405 (2019)CrossRef
75.
Zurück zum Zitat N.V. Sibirev, M. Tchernycheva, M.A. Timofeeva, J.C. Harmand, G.E. Cirlin, V.G. Dubrovskii, Influence of shadow effect on the growth and shape of InAs nanowires. J. Appl. Phys. 111, 104317 (2012)CrossRef N.V. Sibirev, M. Tchernycheva, M.A. Timofeeva, J.C. Harmand, G.E. Cirlin, V.G. Dubrovskii, Influence of shadow effect on the growth and shape of InAs nanowires. J. Appl. Phys. 111, 104317 (2012)CrossRef
76.
Zurück zum Zitat V.G. Dubrovskii, N.V. Sibirev, G.E. Cirlin, A.D. Bouravleuv, Y.B. Samsonenko, D.L. Dheeraj, H.L. Zhou, C. Sartel, J.C. Harmand, G. Patriarche, F. Glas, Role of non-linear effects in nanowire growth and crystal phase. Phys. Rev. B 80, 205305 (2009)CrossRef V.G. Dubrovskii, N.V. Sibirev, G.E. Cirlin, A.D. Bouravleuv, Y.B. Samsonenko, D.L. Dheeraj, H.L. Zhou, C. Sartel, J.C. Harmand, G. Patriarche, F. Glas, Role of non-linear effects in nanowire growth and crystal phase. Phys. Rev. B 80, 205305 (2009)CrossRef
77.
Zurück zum Zitat J.C. Harmand, F. Glas, G. Patriarche, Growth kinetics of a single InP1-xAsx nanowire. Phys. Rev. B 81, 235436 (2010)CrossRef J.C. Harmand, F. Glas, G. Patriarche, Growth kinetics of a single InP1-xAsx nanowire. Phys. Rev. B 81, 235436 (2010)CrossRef
78.
Zurück zum Zitat V.G. Dubrovskii, Y. Hervieu, Diffusion-induced growth of nanowires: generalized boundary conditions and self-consistent kinetic equation. J. Cryst. Growth 401, 431–440 (2014) V.G. Dubrovskii, Y. Hervieu, Diffusion-induced growth of nanowires: generalized boundary conditions and self-consistent kinetic equation. J. Cryst. Growth 401, 431–440 (2014)
79.
Zurück zum Zitat J. Johansson, C.P.T. Svensson, T. Mårtensson, L. Samuelson, W. Seifert, Mass transport model for semiconductor nanowire growth. J. Phys. Chem. B 109, 13567–13571 (2005)CrossRef J. Johansson, C.P.T. Svensson, T. Mårtensson, L. Samuelson, W. Seifert, Mass transport model for semiconductor nanowire growth. J. Phys. Chem. B 109, 13567–13571 (2005)CrossRef
80.
Zurück zum Zitat L.E. Fröberg, W. Seifert, J. Johansson, Diameter-dependent growth rate of InAs nanowires. Phys. Rev. B 76, 153401 (2007)CrossRef L.E. Fröberg, W. Seifert, J. Johansson, Diameter-dependent growth rate of InAs nanowires. Phys. Rev. B 76, 153401 (2007)CrossRef
81.
Zurück zum Zitat V. Consonni, V.G. Dubrovskii, A. Trampert, L. Geelhaar, H. Riechert, Quantitative description for the growth rate of self-induced GaN nanowires. Phys. Rev. B 85, 155313 (2012) V. Consonni, V.G. Dubrovskii, A. Trampert, L. Geelhaar, H. Riechert, Quantitative description for the growth rate of self-induced GaN nanowires. Phys. Rev. B 85, 155313 (2012)
82.
Zurück zum Zitat S.A. Dayeh, S.T. Picraux, Direct observation of nanoscale size effects in Ge semiconductor nanowire growth. Nano Lett. 10, 4032–4039 (2010)CrossRef S.A. Dayeh, S.T. Picraux, Direct observation of nanoscale size effects in Ge semiconductor nanowire growth. Nano Lett. 10, 4032–4039 (2010)CrossRef
83.
Zurück zum Zitat V.G. Dubrovskii, N.V. Sibirev, R.A. Suris, G.E. Cirlin, J.C. Harmand, V.M. Ustinov, Diffusion controlled growth of semiconductor nanowires: vapor pressure versus high vacuum deposition. Surf. Sci. 601, 4395–4401 (2007)CrossRef V.G. Dubrovskii, N.V. Sibirev, R.A. Suris, G.E. Cirlin, J.C. Harmand, V.M. Ustinov, Diffusion controlled growth of semiconductor nanowires: vapor pressure versus high vacuum deposition. Surf. Sci. 601, 4395–4401 (2007)CrossRef
84.
Zurück zum Zitat E.D. Leshchenko, M. Ghasemi, V.G. Dubrovskii, J. Johansson, Nucleation-limited composition of ternary III-V nanowires forming from quaternary gold based liquid alloys. CrystEngComm 20, 1649–1655 (2018)CrossRef E.D. Leshchenko, M. Ghasemi, V.G. Dubrovskii, J. Johansson, Nucleation-limited composition of ternary III-V nanowires forming from quaternary gold based liquid alloys. CrystEngComm 20, 1649–1655 (2018)CrossRef
85.
Zurück zum Zitat G.B. Stringfellow, Calculation of ternary phase diagrams of III–V systems. J. Phys. Chem. Solids 33, 665–677 (1972)CrossRef G.B. Stringfellow, Calculation of ternary phase diagrams of III–V systems. J. Phys. Chem. Solids 33, 665–677 (1972)CrossRef
86.
Zurück zum Zitat F. Glas, V.G. Dubrovskii, Energetics and kinetics of monolayer formation in vapor-liquid-solid nanowire growth. Phys. Rev. Mater. 4, 083401 (2020) F. Glas, V.G. Dubrovskii, Energetics and kinetics of monolayer formation in vapor-liquid-solid nanowire growth. Phys. Rev. Mater. 4, 083401 (2020)
87.
Zurück zum Zitat V.G. Dubrovskii, Refinement of nucleation theory for vapor-liquid-solid nanowires. Cryst. Growth Des. 17, 2589–2593 (2017)CrossRef V.G. Dubrovskii, Refinement of nucleation theory for vapor-liquid-solid nanowires. Cryst. Growth Des. 17, 2589–2593 (2017)CrossRef
88.
Zurück zum Zitat F. Glas, J.C. Harmand, G. Patriarche, Nucleation antibunching in catalyst-assisted nanowire growth. Phys. Rev. Lett. 104, 135501 (2010)CrossRef F. Glas, J.C. Harmand, G. Patriarche, Nucleation antibunching in catalyst-assisted nanowire growth. Phys. Rev. Lett. 104, 135501 (2010)CrossRef
89.
Zurück zum Zitat M. Moewe, L.C. Chuang, V.G. Dubrovskii, C. Chang-Hasnain, Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates. J. Appl. Phys. 104, 044313 (2008)CrossRef M. Moewe, L.C. Chuang, V.G. Dubrovskii, C. Chang-Hasnain, Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates. J. Appl. Phys. 104, 044313 (2008)CrossRef
90.
Zurück zum Zitat E.D. Leshchenko, P. Kuyanov, R.R. LaPierre, V.G. Dubrovskii, Tuning the morphology of self-assisted GaP nanowires. Nanotechnology 29, 225603 (2018)CrossRef E.D. Leshchenko, P. Kuyanov, R.R. LaPierre, V.G. Dubrovskii, Tuning the morphology of self-assisted GaP nanowires. Nanotechnology 29, 225603 (2018)CrossRef
91.
Zurück zum Zitat V.G. Dubrovskii, Self-regulated pulsed nucleation in catalyzed nanowire growth. Phys. Rev. 87, 195426 (2013)CrossRef V.G. Dubrovskii, Self-regulated pulsed nucleation in catalyzed nanowire growth. Phys. Rev. 87, 195426 (2013)CrossRef
92.
Zurück zum Zitat V.G. Dubrovskii, N.V. Sibirev, Y. Berdnikov, U.P. Gomes, D. Ercolani, V. Zannier, L. Sorba, Length distributions of Au-catalyzed and In-catalyzed InAs nanowires. Nanotechnology 27, 375602 (2016)CrossRef V.G. Dubrovskii, N.V. Sibirev, Y. Berdnikov, U.P. Gomes, D. Ercolani, V. Zannier, L. Sorba, Length distributions of Au-catalyzed and In-catalyzed InAs nanowires. Nanotechnology 27, 375602 (2016)CrossRef
93.
Zurück zum Zitat V.G. Dubrovskii, Y. Berdnikov, J. Schmidtbauer, M. Borg, K. Storm, K. Deppert, J. Johansson, Length distributions of nanowires growing by surface diffusion. Cryst. Growth Des. 16, 2167–2172 (2016)CrossRef V.G. Dubrovskii, Y. Berdnikov, J. Schmidtbauer, M. Borg, K. Storm, K. Deppert, J. Johansson, Length distributions of nanowires growing by surface diffusion. Cryst. Growth Des. 16, 2167–2172 (2016)CrossRef
94.
Zurück zum Zitat V.G. Dubrovskii, Length distributions of nanowires: effects of surface diffusion versus nucleation delay. J. Cryst. Growth 463, 139–144 (2017)CrossRef V.G. Dubrovskii, Length distributions of nanowires: effects of surface diffusion versus nucleation delay. J. Cryst. Growth 463, 139–144 (2017)CrossRef
95.
Zurück zum Zitat F. Glas, V.G. Dubrovskii, Self-narrowing of size distributions of nanostructures by nucleation antibunching. Phys. Rev. Mater. 1, 036003 (2017)CrossRef F. Glas, V.G. Dubrovskii, Self-narrowing of size distributions of nanostructures by nucleation antibunching. Phys. Rev. Mater. 1, 036003 (2017)CrossRef
96.
Zurück zum Zitat V.G. Dubrovskii, Analytic form of the size distribution in irreversible growth of nanoparticles. Phys. Rev. E 99, 012105 (2019)CrossRef V.G. Dubrovskii, Analytic form of the size distribution in irreversible growth of nanoparticles. Phys. Rev. E 99, 012105 (2019)CrossRef
97.
Zurück zum Zitat F. Matteini, V.G. Dubrovskii, D. Rüffer, G. Tütüncüoğlu, Y. Fontana, A. Fontcuberta i Morral, Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon. Nanotechnology 26, 105603 (2015) F. Matteini, V.G. Dubrovskii, D. Rüffer, G. Tütüncüoğlu, Y. Fontana, A. Fontcuberta i Morral, Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon. Nanotechnology 26, 105603 (2015)
98.
Zurück zum Zitat V.G. Dubrovskii, N.V. Sibirev, Analytic scaling function for island-size distributions. Phys. Rev. E 91, 042408 (2015)CrossRef V.G. Dubrovskii, N.V. Sibirev, Analytic scaling function for island-size distributions. Phys. Rev. E 91, 042408 (2015)CrossRef
99.
Zurück zum Zitat F. Glas, Statistics of sub-Poissonian nucleation in a nanophase. Phys. Rev. B 90, 125406 (2014)CrossRef F. Glas, Statistics of sub-Poissonian nucleation in a nanophase. Phys. Rev. B 90, 125406 (2014)CrossRef
100.
Zurück zum Zitat V.G. Dubrovskii, Fluctuation-induced spreading of size distribution in condensation kinetics. J. Chem. Phys. 131, 164514 (2009)CrossRef V.G. Dubrovskii, Fluctuation-induced spreading of size distribution in condensation kinetics. J. Chem. Phys. 131, 164514 (2009)CrossRef
101.
Zurück zum Zitat T.V. Hakkarainen, A. Schramm, J. Mäkelä, P. Laukkanen, M. Guina, Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111). Nanotechnology 26, 275301 (2015)CrossRef T.V. Hakkarainen, A. Schramm, J. Mäkelä, P. Laukkanen, M. Guina, Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111). Nanotechnology 26, 275301 (2015)CrossRef
102.
Zurück zum Zitat S.G. Choi, P. Manandhar, S.T. Picraux, Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires: Composition dependence on precursor reactivity and morphology control for vertical forests. J. Appl. Phys. 118, 014303 (2015)CrossRef S.G. Choi, P. Manandhar, S.T. Picraux, Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires: Composition dependence on precursor reactivity and morphology control for vertical forests. J. Appl. Phys. 118, 014303 (2015)CrossRef
103.
Zurück zum Zitat S. Biswas, J. Doherty, D. Saladukha, Q. Ramasse, D. Majumdar, M. Upmanyu, A. Singha, T. Ochalski, M.A. Morris, J.D. Holmes, Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1-xSnx nanowires. Nature Comm. 7, 11405 (2016)CrossRef S. Biswas, J. Doherty, D. Saladukha, Q. Ramasse, D. Majumdar, M. Upmanyu, A. Singha, T. Ochalski, M.A. Morris, J.D. Holmes, Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1-xSnx nanowires. Nature Comm. 7, 11405 (2016)CrossRef
104.
Zurück zum Zitat A. Pan, P.L. Nichols, C.Z. Ning, Semiconductor alloy nanowires and nanobelts with tunable optical properties. IEEE J. Select. Topics Quant. Electron. 17, 808–818 (2011)CrossRef A. Pan, P.L. Nichols, C.Z. Ning, Semiconductor alloy nanowires and nanobelts with tunable optical properties. IEEE J. Select. Topics Quant. Electron. 17, 808–818 (2011)CrossRef
105.
Zurück zum Zitat V.G. Dubrovskii, Understanding the vapor-liquid-solid growth and composition of ternary III-V nanowires and nanowire heterostructures. J. Phys. D: Appl. Phys. 50, 453001 (2017)CrossRef V.G. Dubrovskii, Understanding the vapor-liquid-solid growth and composition of ternary III-V nanowires and nanowire heterostructures. J. Phys. D: Appl. Phys. 50, 453001 (2017)CrossRef
106.
Zurück zum Zitat V.G. Dubrovskii, A.A. Koryakin, N.V. Sibirev, Understanding the composition of ternary III-V nanowires and axial nanowire heterostructures in nucleation-limited regime. Mater. Des. 132, 400–408 (2017)CrossRef V.G. Dubrovskii, A.A. Koryakin, N.V. Sibirev, Understanding the composition of ternary III-V nanowires and axial nanowire heterostructures in nucleation-limited regime. Mater. Des. 132, 400–408 (2017)CrossRef
107.
Zurück zum Zitat P. Periwal, N.V. Sibirev, G. Patriarche, B. Salem, F. Bassani, V.G. Dubrovskii, T. Baron, Composition-dependent interfacial abruptness in Au-catalyzed Si1−xGex/Si/Si1−xGex nanowire heterostructures. Nano Lett. 14, 5140–5147 (2014)CrossRef P. Periwal, N.V. Sibirev, G. Patriarche, B. Salem, F. Bassani, V.G. Dubrovskii, T. Baron, Composition-dependent interfacial abruptness in Au-catalyzed Si1xGex/Si/Si1xGex nanowire heterostructures. Nano Lett. 14, 5140–5147 (2014)CrossRef
108.
Zurück zum Zitat G. Priante, F. Glas, G. Patriarche, K. Pantzas, F. Oehler, J.-C. Harmand, Sharpening the interfaces of axial heterostructures in self-catalyzed AlGaAs nanowires: experiment and theory. Nano Lett. 16, 1917–1924 (2016)CrossRef G. Priante, F. Glas, G. Patriarche, K. Pantzas, F. Oehler, J.-C. Harmand, Sharpening the interfaces of axial heterostructures in self-catalyzed AlGaAs nanowires: experiment and theory. Nano Lett. 16, 1917–1924 (2016)CrossRef
109.
Zurück zum Zitat F. Glas, Comparison of modeling strategies for the growth of heterostructures in III-V nanowires. Cryst. Growth Des. 17, 4785–4794 (2017)CrossRef F. Glas, Comparison of modeling strategies for the growth of heterostructures in III-V nanowires. Cryst. Growth Des. 17, 4785–4794 (2017)CrossRef
110.
Zurück zum Zitat H. Reiss, The kinetics of phase transitions in binary systems. J. Chem. Phys. 18, 840–848 (1950)CrossRef H. Reiss, The kinetics of phase transitions in binary systems. J. Chem. Phys. 18, 840–848 (1950)CrossRef
111.
Zurück zum Zitat J. Johansson, M. Ghasemi, Composition of gold alloy seeded InGaAs nanowires in the nucleation limited regime. Cryst. Growth Des. 17, 1630–1635 (2017)CrossRef J. Johansson, M. Ghasemi, Composition of gold alloy seeded InGaAs nanowires in the nucleation limited regime. Cryst. Growth Des. 17, 1630–1635 (2017)CrossRef
112.
Zurück zum Zitat M. Ghasemi, M. Selleby, J. Johansson, Thermodynamic assessment and binary nucleation modeling of Sn-seeded InGaAs nanowires. J. Cryst. Growth 478, 152–158 (2017)CrossRef M. Ghasemi, M. Selleby, J. Johansson, Thermodynamic assessment and binary nucleation modeling of Sn-seeded InGaAs nanowires. J. Cryst. Growth 478, 152–158 (2017)CrossRef
113.
Zurück zum Zitat J. Johansson, E.D. Leshchenko, Zinc blende and wurtzite crystal structure formation in gold catalyzed InGaAs nanowires. J. Cryst. Growth 509, 118–123 (2019)CrossRef J. Johansson, E.D. Leshchenko, Zinc blende and wurtzite crystal structure formation in gold catalyzed InGaAs nanowires. J. Cryst. Growth 509, 118–123 (2019)CrossRef
114.
Zurück zum Zitat J. Johansson, M. Ghasemi, Kinetically limited composition of ternary III-V nanowires. Phys. Rev. Mater. 1, 040401 (2017)CrossRef J. Johansson, M. Ghasemi, Kinetically limited composition of ternary III-V nanowires. Phys. Rev. Mater. 1, 040401 (2017)CrossRef
115.
Zurück zum Zitat A. Scaccabarozzi, A. Cattoni, G. Patriarche, L. Travers, S. Collin, J.-C. Harmand, F. Glas, F. Oehler, Stable and high yield growth of GaP and In0.2Ga0.8As nanowire arrays using In as a catalyst. Nanoscale 12, 18240-18248 (2020) A. Scaccabarozzi, A. Cattoni, G. Patriarche, L. Travers, S. Collin, J.-C. Harmand, F. Glas, F. Oehler, Stable and high yield growth of GaP and In0.2Ga0.8As nanowire arrays using In as a catalyst. Nanoscale 12, 18240-18248 (2020)
116.
Zurück zum Zitat D. Spirkoska, J. Arbiol, A. Gustafsson, S. Conesa-Boj, F. Glas, I. Zardo, M. Heigoldt, M.H. Gass, A.L. Bleloch, S. Estrade, M. Kaniber, J. Rossler, F. Peiro, J.R. Morante, G. Abstreiter, L. Samuelson, A. Fontcuberta i Morral, Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys. Rev. B 80, 245325 (2009) D. Spirkoska, J. Arbiol, A. Gustafsson, S. Conesa-Boj, F. Glas, I. Zardo, M. Heigoldt, M.H. Gass, A.L. Bleloch, S. Estrade, M. Kaniber, J. Rossler, F. Peiro, J.R. Morante, G. Abstreiter, L. Samuelson, A. Fontcuberta i Morral, Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys. Rev. B 80, 245325 (2009)
117.
Zurück zum Zitat N. Akopian, P. Patriarche, L. Liu, J.-C. Harmand, V. Zwiller, Crystal phase quantum dots. Nano Lett. 10, 1198–1201 (2010)CrossRef N. Akopian, P. Patriarche, L. Liu, J.-C. Harmand, V. Zwiller, Crystal phase quantum dots. Nano Lett. 10, 1198–1201 (2010)CrossRef
118.
Zurück zum Zitat F. Glas, B. Daudin, Stress-driven island growth on top of nanowires. Phys. Rev. B 86, 174112 (2012)CrossRef F. Glas, B. Daudin, Stress-driven island growth on top of nanowires. Phys. Rev. B 86, 174112 (2012)CrossRef
119.
Zurück zum Zitat N.D. Zakharov, P. Werner, G. Gerth, L. Schubert, L. Sokolov, U. Gösele, Growth phenomena of Si and Si/Ge nanowires on Si (1 1 1) by molecular beam epitaxy. J. Cryst. Growth 290, 6–10 (2006)CrossRef N.D. Zakharov, P. Werner, G. Gerth, L. Schubert, L. Sokolov, U. Gösele, Growth phenomena of Si and Si/Ge nanowires on Si (1 1 1) by molecular beam epitaxy. J. Cryst. Growth 290, 6–10 (2006)CrossRef
120.
Zurück zum Zitat S.A. Dayeh, J. Wang, N. Li, J.Y. Huang, A.V. Gin, S.T. Picraux, Growth, defect formation, and morphology control of germanium-silicon semiconductor nanowire heterostructures. Nano Lett. 11, 4200–4206 (2011)CrossRef S.A. Dayeh, J. Wang, N. Li, J.Y. Huang, A.V. Gin, S.T. Picraux, Growth, defect formation, and morphology control of germanium-silicon semiconductor nanowire heterostructures. Nano Lett. 11, 4200–4206 (2011)CrossRef
121.
Zurück zum Zitat K. Hiruma, H. Murakoshi, M. Yazawa, T. Katsuyama, Self-organized growth of GaAs/InAs heterostructure nanocylinders by organometallic vapor phase epitaxy. J. Cryst. Growth 163, 226–231 (1996)CrossRef K. Hiruma, H. Murakoshi, M. Yazawa, T. Katsuyama, Self-organized growth of GaAs/InAs heterostructure nanocylinders by organometallic vapor phase epitaxy. J. Cryst. Growth 163, 226–231 (1996)CrossRef
122.
Zurück zum Zitat M. Paladugu, J. Zou, Y.-N. Guo, X. Zhang, Y. Kim, H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, Nature of heterointerfaces in GaAs/InAs and InAs/GaAs axial nanowire heterostructures. Appl. Phys. Lett. 93, 101911 (2008)CrossRef M. Paladugu, J. Zou, Y.-N. Guo, X. Zhang, Y. Kim, H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, Nature of heterointerfaces in GaAs/InAs and InAs/GaAs axial nanowire heterostructures. Appl. Phys. Lett. 93, 101911 (2008)CrossRef
123.
Zurück zum Zitat M.T. Björk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, L. Samuelson, One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87–89 (2002)CrossRef M.T. Björk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, L. Samuelson, One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87–89 (2002)CrossRef
124.
Zurück zum Zitat L.E. Fröberg, B.A. Wacaser, J.B. Wagner, S. Jeppesen, B.J. Ohlsson, K. Deppert, L. Samuelson, Transients in the formation of nanowire heterostructures. Nano Lett. 8, 3815–3818 (2008)CrossRef L.E. Fröberg, B.A. Wacaser, J.B. Wagner, S. Jeppesen, B.J. Ohlsson, K. Deppert, L. Samuelson, Transients in the formation of nanowire heterostructures. Nano Lett. 8, 3815–3818 (2008)CrossRef
125.
Zurück zum Zitat J.P. Boulanger, R.R. LaPierre, Polytype formation in GaAs/GaP axial nanowire heterostructures. J. Cryst. Growth 332, 21–26 (2011)CrossRef J.P. Boulanger, R.R. LaPierre, Polytype formation in GaAs/GaP axial nanowire heterostructures. J. Cryst. Growth 332, 21–26 (2011)CrossRef
126.
Zurück zum Zitat M. Pozuelo, H. Zhou, S. Lin, S.A. Lipman, M.S. Goorsky, R.F. Hicks, S. Kodambaka, Self-catalyzed growth of InP/InSb axial nanowire heterostructures. J. Cryst. Growth 329, 6–11 (2011)CrossRef M. Pozuelo, H. Zhou, S. Lin, S.A. Lipman, M.S. Goorsky, R.F. Hicks, S. Kodambaka, Self-catalyzed growth of InP/InSb axial nanowire heterostructures. J. Cryst. Growth 329, 6–11 (2011)CrossRef
127.
Zurück zum Zitat P. Caroff, J.B. Wagner, K.A. Dick, H.A. Nilsson, M. Jeppsson, K. Deppert, L. Samuelson, L.R. Wallenberg, L.-E. Wernersson, High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy. Small 4, 878–882 (2008)CrossRef P. Caroff, J.B. Wagner, K.A. Dick, H.A. Nilsson, M. Jeppsson, K. Deppert, L. Samuelson, L.R. Wallenberg, L.-E. Wernersson, High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy. Small 4, 878–882 (2008)CrossRef
128.
Zurück zum Zitat M.T. Borgström, M.A. Verheijen, G. Immink, T. de Smet, E.P.A.M. Bakkers, Interface study on heterostructured GaP-GaAs nanowires. Nanotechnology 17, 4010–4013 (2006)CrossRef M.T. Borgström, M.A. Verheijen, G. Immink, T. de Smet, E.P.A.M. Bakkers, Interface study on heterostructured GaP-GaAs nanowires. Nanotechnology 17, 4010–4013 (2006)CrossRef
129.
Zurück zum Zitat M. Jeppsson, K.A. Dick, J.A. Wagner, P. Caroff, K. Deppert, L. Samuelson, L.-E. Wernersson, GaAs/GaSb nanowire heterostructures grown by MOVPE. J. Cryst. Growth 310, 4115–4121 (2008)CrossRef M. Jeppsson, K.A. Dick, J.A. Wagner, P. Caroff, K. Deppert, L. Samuelson, L.-E. Wernersson, GaAs/GaSb nanowire heterostructures grown by MOVPE. J. Cryst. Growth 310, 4115–4121 (2008)CrossRef
130.
Zurück zum Zitat J.P. Boulanger, R.R. LaPierre, Unveiling transient GaAs/GaP nanowire growth behavior using group V oscillations. Cryst. Growth 388, 116–123 (2014)CrossRef J.P. Boulanger, R.R. LaPierre, Unveiling transient GaAs/GaP nanowire growth behavior using group V oscillations. Cryst. Growth 388, 116–123 (2014)CrossRef
131.
Zurück zum Zitat G. Priante, G. Patriarche, F. Oehler, F. Glas, J.-C. Harmand, Abrupt GaP/GaAs interfaces in self-catalyzed nanowires. Nano Lett. 15, 6036–6041 (2015)CrossRef G. Priante, G. Patriarche, F. Oehler, F. Glas, J.-C. Harmand, Abrupt GaP/GaAs interfaces in self-catalyzed nanowires. Nano Lett. 15, 6036–6041 (2015)CrossRef
132.
Zurück zum Zitat K. Tateno, G. Zhang, M. Takiguchi, H. Gotoh, T. Sogawa, VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures. Nano Lett. 12, 2888–2893 (2012)CrossRef K. Tateno, G. Zhang, M. Takiguchi, H. Gotoh, T. Sogawa, VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures. Nano Lett. 12, 2888–2893 (2012)CrossRef
133.
Zurück zum Zitat L. Ouattara, A. Mikkelsen, N. Sköld, J. Eriksson, T. Knaapen, E. Cavar, W. Seifert, L. Samuelson, E. Lundgren, GaAs/AlGaAs nanowire heterostructures studied by scanning tunneling microscopy. Nano Lett. 7, 2859–2864 (2007)CrossRef L. Ouattara, A. Mikkelsen, N. Sköld, J. Eriksson, T. Knaapen, E. Cavar, W. Seifert, L. Samuelson, E. Lundgren, GaAs/AlGaAs nanowire heterostructures studied by scanning tunneling microscopy. Nano Lett. 7, 2859–2864 (2007)CrossRef
134.
Zurück zum Zitat J. Guo, H. Huang, X. Ren, Y. Xin, S. Cai, Y. Huang, Q. Wang, X. Zhang, W. Wang, Stacking-faults-free zinc blende GaAs/AlGaAs axial heterostructure nanowires during vapor-liquid-solid growth. Chinese Opt. Lett. 9, 041601 (2011)CrossRef J. Guo, H. Huang, X. Ren, Y. Xin, S. Cai, Y. Huang, Q. Wang, X. Zhang, W. Wang, Stacking-faults-free zinc blende GaAs/AlGaAs axial heterostructure nanowires during vapor-liquid-solid growth. Chinese Opt. Lett. 9, 041601 (2011)CrossRef
135.
Zurück zum Zitat K. Tateno, G. Zhang, H. Nakano, Growth of GaInAs/AlInAs heterostructure nanowires for long-wavelength photon emission. Nano Lett. 8, 3645–3650 (2008)CrossRef K. Tateno, G. Zhang, H. Nakano, Growth of GaInAs/AlInAs heterostructure nanowires for long-wavelength photon emission. Nano Lett. 8, 3645–3650 (2008)CrossRef
136.
Zurück zum Zitat M. Heiß, A. Gustafsson, S. Conesa-Boj, F. Peiró, J.R. Morante, G. Abstreiter, J.G. Arbiol, L. Samuelson, A. Fontcuberta i Morral, Catalyst-free nanowires with axial InxGa1-xAs/GaAs heterostructures. Nanotechnology 20, 075603 (2009) M. Heiß, A. Gustafsson, S. Conesa-Boj, F. Peiró, J.R. Morante, G. Abstreiter, J.G. Arbiol, L. Samuelson, A. Fontcuberta i Morral, Catalyst-free nanowires with axial InxGa1-xAs/GaAs heterostructures. Nanotechnology 20, 075603 (2009)
137.
Zurück zum Zitat P. Krogstrup, J. Yamasaki, C.B. Sørensen, E. Johnson, J.B. Wagner, R. Pennington, M. Aagesen, N. Tanaka, J. Nygård, Junctions in axial III-V heterostructure nanowires obtained via an interchange of group III elements. Nano Lett. 9, 3689–3693 (2011)CrossRef P. Krogstrup, J. Yamasaki, C.B. Sørensen, E. Johnson, J.B. Wagner, R. Pennington, M. Aagesen, N. Tanaka, J. Nygård, Junctions in axial III-V heterostructure nanowires obtained via an interchange of group III elements. Nano Lett. 9, 3689–3693 (2011)CrossRef
138.
Zurück zum Zitat S. Plissard, K.A. Dick, X. Wallart, P. Caroff, Gold-free GaAs/GaAsSb heterostructure nanowires grown on silicon. Appl. Phys. Lett. 96, 121901 (2010)CrossRef S. Plissard, K.A. Dick, X. Wallart, P. Caroff, Gold-free GaAs/GaAsSb heterostructure nanowires grown on silicon. Appl. Phys. Lett. 96, 121901 (2010)CrossRef
139.
Zurück zum Zitat K. Tateno, G. Zhang, M. Takiguchi, H. Gotoh, Alternating InAsP/InP heterostructure nanowires grown with tertiarybutyl chloride. Nano Futures 2, 045006 (2018)CrossRef K. Tateno, G. Zhang, M. Takiguchi, H. Gotoh, Alternating InAsP/InP heterostructure nanowires grown with tertiarybutyl chloride. Nano Futures 2, 045006 (2018)CrossRef
140.
Zurück zum Zitat C.H. Hsiao, S.J. Chang, S.C. Hung, Y.C. Cheng, B.R. Huang, S.B. Wang, B.W. Lan, S.H. Chih, ZnSe/ZnCdSe heterostructure nanowires. J. Cryst. Growth 312, 1670–1675 (2010)CrossRef C.H. Hsiao, S.J. Chang, S.C. Hung, Y.C. Cheng, B.R. Huang, S.B. Wang, B.W. Lan, S.H. Chih, ZnSe/ZnCdSe heterostructure nanowires. J. Cryst. Growth 312, 1670–1675 (2010)CrossRef
141.
Zurück zum Zitat E. Bellet-Amalric, M. Elouneg-Jamroz, P. Rueda-Fonseca, S. Bounouar, M. Den Hertog, C. Bougerol, R. André, Y. Genuist, J.P. Poizat, K. Kheng, J. Cibert, S. Tatarenko, Growth of II–VI ZnSe/CdSe nanowires for quantum dot luminescence. J. Cryst. Growth 378, 233–237 (2013)CrossRef E. Bellet-Amalric, M. Elouneg-Jamroz, P. Rueda-Fonseca, S. Bounouar, M. Den Hertog, C. Bougerol, R. André, Y. Genuist, J.P. Poizat, K. Kheng, J. Cibert, S. Tatarenko, Growth of II–VI ZnSe/CdSe nanowires for quantum dot luminescence. J. Cryst. Growth 378, 233–237 (2013)CrossRef
142.
Zurück zum Zitat D. Ercolani, F. Rossi, A. Li, S. Roddaro, V. Grillo, G. Salviati, B. Beltram, L. Sorba, InAs/InSb nanowire heterostructures grown by chemical beam epitaxy. Nanotechnology 20, 505605 (2009)CrossRef D. Ercolani, F. Rossi, A. Li, S. Roddaro, V. Grillo, G. Salviati, B. Beltram, L. Sorba, InAs/InSb nanowire heterostructures grown by chemical beam epitaxy. Nanotechnology 20, 505605 (2009)CrossRef
143.
Zurück zum Zitat V. Zannier, F. Rossi, D. Ercolani, L. Sorba, Growth dynamics of InAs/InP nanowire heterostructures by Au-assisted chemical beam epitaxy. Nanotechnology 30, 094003 (2019)CrossRef V. Zannier, F. Rossi, D. Ercolani, L. Sorba, Growth dynamics of InAs/InP nanowire heterostructures by Au-assisted chemical beam epitaxy. Nanotechnology 30, 094003 (2019)CrossRef
144.
Zurück zum Zitat P.-Y. Chevalier, A thermodynamic evaluation of the Au-Ge and Au-Si systems. Thermochim. Acta 141, 217–226 (1989)CrossRef P.-Y. Chevalier, A thermodynamic evaluation of the Au-Ge and Au-Si systems. Thermochim. Acta 141, 217–226 (1989)CrossRef
145.
Zurück zum Zitat R.A. Burke, X. Weng, M.-W. Kuo, Y.-W. Song, A.M. Itsuno, T.S. Mayer, S.M. Durbin, R.J. Reeves, J.M. Redwing, Growth and characterization of unintentionally doped GaSb nanowires. J. Electron. Mater. 39, 355–364 (2010)CrossRef R.A. Burke, X. Weng, M.-W. Kuo, Y.-W. Song, A.M. Itsuno, T.S. Mayer, S.M. Durbin, R.J. Reeves, J.M. Redwing, Growth and characterization of unintentionally doped GaSb nanowires. J. Electron. Mater. 39, 355–364 (2010)CrossRef
146.
Zurück zum Zitat K.A. Dick, J. Bolinsson, B.M. Borg, J. Johansson, Controlling the abruptness of axial heterojunctions in III−V nanowires: Beyond the reservoir effect. Nano Lett. 12, 3200–3206 (2012)CrossRef K.A. Dick, J. Bolinsson, B.M. Borg, J. Johansson, Controlling the abruptness of axial heterojunctions in III−V nanowires: Beyond the reservoir effect. Nano Lett. 12, 3200–3206 (2012)CrossRef
147.
Zurück zum Zitat C. Li, J.B. Li, Z. Du, L. Lu, W. Zhang, A thermodynamic reassessment of the Al-As-Ga system. J. Phase Equilib. 22, 26–33 (2001)CrossRef C. Li, J.B. Li, Z. Du, L. Lu, W. Zhang, A thermodynamic reassessment of the Al-As-Ga system. J. Phase Equilib. 22, 26–33 (2001)CrossRef
148.
Zurück zum Zitat J.-B. Li, W. Zhang, C. Li, Z. Du, A thermodynamic assessment of the Ga-As-Sb system. J. Phase Equil. 19, 466–472 (1998)CrossRef J.-B. Li, W. Zhang, C. Li, Z. Du, A thermodynamic assessment of the Ga-As-Sb system. J. Phase Equil. 19, 466–472 (1998)CrossRef
149.
Zurück zum Zitat C. Li, J.-B. Li, Z. Du, W. Zhang, A thermodynamic assessment of the Ga-In-P system. J. Phase Equil. 21, 357–363 (2000)CrossRef C. Li, J.-B. Li, Z. Du, W. Zhang, A thermodynamic assessment of the Ga-In-P system. J. Phase Equil. 21, 357–363 (2000)CrossRef
150.
Zurück zum Zitat I. Ansara, C. Chatillon, H.L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, B. Sundman, B.B. Argent, A. Watson, T.G. Chart, T. Anderson, A binary database for III-V compound semiconductor systems. Calphad 18, 177–222 (1994)CrossRef I. Ansara, C. Chatillon, H.L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, B. Sundman, B.B. Argent, A. Watson, T.G. Chart, T. Anderson, A binary database for III-V compound semiconductor systems. Calphad 18, 177–222 (1994)CrossRef
151.
Zurück zum Zitat F. Glas, Elastic strain relaxation: thermodynamics and kinetics, in Mechanical stress on the nanoscale - Simulation, material systems and characterization techniques, ed. by M. Hanbücken, P. Müller, R.B. Wehrspohn (Wiley-VCH, Weinheim, 2011), pp. 3–26 F. Glas, Elastic strain relaxation: thermodynamics and kinetics, in Mechanical stress on the nanoscale - Simulation, material systems and characterization techniques, ed. by M. Hanbücken, P. Müller, R.B. Wehrspohn (Wiley-VCH, Weinheim, 2011), pp. 3–26
152.
Zurück zum Zitat V. Zannier, F. Rossi, V.G. Dubrovskii, D. Ercolani, S. Battiato, L. Sorba, Nanoparticle stability in axial InAs-InP nanowire heterostructures with atomically sharp interfaces. Nano Lett. 18, 167–174 (2018)CrossRef V. Zannier, F. Rossi, V.G. Dubrovskii, D. Ercolani, S. Battiato, L. Sorba, Nanoparticle stability in axial InAs-InP nanowire heterostructures with atomically sharp interfaces. Nano Lett. 18, 167–174 (2018)CrossRef
153.
Zurück zum Zitat J. Tang, J.-L. Maurice, F. Fossard, I. Florea, W. Chen, E.V. Johnson, M. Foldyna, L. Yu, P. Roca i Cabarrocas, Natural occurrence of the diamond hexagonal structure in silicon nanowires grown by plasma assisted vapour-liquid-solid method. Nanoscale 9, 8113–8118 (2017) J. Tang, J.-L. Maurice, F. Fossard, I. Florea, W. Chen, E.V. Johnson, M. Foldyna, L. Yu, P. Roca i Cabarrocas, Natural occurrence of the diamond hexagonal structure in silicon nanowires grown by plasma assisted vapour-liquid-solid method. Nanoscale 9, 8113–8118 (2017)
154.
Zurück zum Zitat D.L. Dheeraj, G. Patriarche, H. Zhou, T.B. Hoang, A.F. Moses, S. Grønsberg, A.T.J. van Helvoort, B.O. Fimland, H. Weman, Growth and characterization of wurtzite GaAs nanowires with defect-free zinc blende GaAsSb inserts. Nano Lett. 8, 4459–4463 (2008)CrossRef D.L. Dheeraj, G. Patriarche, H. Zhou, T.B. Hoang, A.F. Moses, S. Grønsberg, A.T.J. van Helvoort, B.O. Fimland, H. Weman, Growth and characterization of wurtzite GaAs nanowires with defect-free zinc blende GaAsSb inserts. Nano Lett. 8, 4459–4463 (2008)CrossRef
155.
Zurück zum Zitat M. Koguchi, H. Kakiyabashi, M. Yazawa, K. Hiruma, T. Katsuyama, Crystal structure change of GaAs and InAs whiskers from zinc-blende to wurtzite type. Jpn. J. Appl. Phys. 31, 2061–2065 (1992)CrossRef M. Koguchi, H. Kakiyabashi, M. Yazawa, K. Hiruma, T. Katsuyama, Crystal structure change of GaAs and InAs whiskers from zinc-blende to wurtzite type. Jpn. J. Appl. Phys. 31, 2061–2065 (1992)CrossRef
156.
Zurück zum Zitat K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, H. Kakiyabashi, Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 77, 447–462 (1995)CrossRef K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, H. Kakiyabashi, Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 77, 447–462 (1995)CrossRef
157.
Zurück zum Zitat C.-Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Zinc-blende-wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086–10097 (1992)CrossRef C.-Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Zinc-blende-wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086–10097 (1992)CrossRef
158.
Zurück zum Zitat C.-Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Predictions and systematizations of the zinc-blende-wurtzite structural energies in binary octet compounds. Phys. Rev. B 45, 12130–12133 (1992)CrossRef C.-Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Predictions and systematizations of the zinc-blende-wurtzite structural energies in binary octet compounds. Phys. Rev. B 45, 12130–12133 (1992)CrossRef
159.
Zurück zum Zitat Takeuchi, S., Suzuki, K., Stacking fault energies of tetrahedrally coordinated crystals. phys. stat. sol. (a) 171, 99–103 (1999) Takeuchi, S., Suzuki, K., Stacking fault energies of tetrahedrally coordinated crystals. phys. stat. sol. (a) 171, 99–103 (1999)
160.
Zurück zum Zitat F. Glas, A simple calculation of energy changes upon stacking fault formation or local crystalline phase transition in semiconductors. J. Appl. Phys. 104, 093520 (2008)CrossRef F. Glas, A simple calculation of energy changes upon stacking fault formation or local crystalline phase transition in semiconductors. J. Appl. Phys. 104, 093520 (2008)CrossRef
161.
Zurück zum Zitat T. Akiyama, K. Nakamura, T. Ito, Structural stability and electronic structures of InP nanowires: Role of surface dangling bonds on nanowire facets. Phys. Rev. B 73, 235308 (2006)CrossRef T. Akiyama, K. Nakamura, T. Ito, Structural stability and electronic structures of InP nanowires: Role of surface dangling bonds on nanowire facets. Phys. Rev. B 73, 235308 (2006)CrossRef
162.
Zurück zum Zitat T. Akiyama, K. Sano, K. Nakamura, T. Ito, An empirical potential approach to wurtzite-zinc-blende polytypism in group III–V semiconductor nanowires. Jpn. J. Appl. Phys. 45, L275–L278 (2006)CrossRef T. Akiyama, K. Sano, K. Nakamura, T. Ito, An empirical potential approach to wurtzite-zinc-blende polytypism in group III–V semiconductor nanowires. Jpn. J. Appl. Phys. 45, L275–L278 (2006)CrossRef
163.
Zurück zum Zitat H. Shtrikman, R. Popovitz-Biro, A. Kretinin, L. Houben, M. Heiblum, M. Bukala, M. Galicka, R. Buczko, P. Kacman, Method for suppression of stacking faults in wurtzite III-V nanowires. Nano Lett. 9, 1506–1510 (2009)CrossRef H. Shtrikman, R. Popovitz-Biro, A. Kretinin, L. Houben, M. Heiblum, M. Bukala, M. Galicka, R. Buczko, P. Kacman, Method for suppression of stacking faults in wurtzite III-V nanowires. Nano Lett. 9, 1506–1510 (2009)CrossRef
164.
Zurück zum Zitat B. Mutaftschiev, R. Kern, C. Georges, Sur le mécanisme VLS de croissance des whiskers. Phys. Lett. 16, 32–33 (1965)CrossRef B. Mutaftschiev, R. Kern, C. Georges, Sur le mécanisme VLS de croissance des whiskers. Phys. Lett. 16, 32–33 (1965)CrossRef
165.
Zurück zum Zitat E. Hilner, U. Håkanson, L.E. Fröberg, M. Karlsson, P. Kratzer, E. Lundgren, L. Samuelson, A. Mikkelsen, Direct atomic scale imaging of III-V nanowire surfaces. Nano Lett. 8, 3978–3982 (2008) E. Hilner, U. Håkanson, L.E. Fröberg, M. Karlsson, P. Kratzer, E. Lundgren, L. Samuelson, A. Mikkelsen, Direct atomic scale imaging of III-V nanowire surfaces. Nano Lett. 8, 3978–3982 (2008)
166.
Zurück zum Zitat N.V. Sibirev, M.A. Timofeeva, A.D. Bol’shakova, M.V. Nazarenko, V.G. Dubrovskii, Surface energy and crystal structure of nanowhiskers of III–V semiconductor compounds. Phys. Sol. State 52, 1531–1538 (2010) N.V. Sibirev, M.A. Timofeeva, A.D. Bol’shakova, M.V. Nazarenko, V.G. Dubrovskii, Surface energy and crystal structure of nanowhiskers of III–V semiconductor compounds. Phys. Sol. State 52, 1531–1538 (2010)
167.
Zurück zum Zitat R.E. Algra, V. Vonk, D. Wermeille, W.J. Szweryn, M.A. Verheijen, W.J.P. van Enckevort, A.A.C. Bode, W.L. Noorduin, E. Tancini, A.E.F. de Jong, E.P.A.M. Bakkers, E. Vlieg, Formation of wurtzite InP nanowires explained by liquid-ordering. Nano Lett. 11, 44–48 (2011)CrossRef R.E. Algra, V. Vonk, D. Wermeille, W.J. Szweryn, M.A. Verheijen, W.J.P. van Enckevort, A.A.C. Bode, W.L. Noorduin, E. Tancini, A.E.F. de Jong, E.P.A.M. Bakkers, E. Vlieg, Formation of wurtzite InP nanowires explained by liquid-ordering. Nano Lett. 11, 44–48 (2011)CrossRef
168.
Zurück zum Zitat W.D. Kaplan, Y. Kauffmann, Structural order in liquids induced by interfaces with crystals. Annu. Rev. Mater. Res. 36, 1–48 (2006)CrossRef W.D. Kaplan, Y. Kauffmann, Structural order in liquids induced by interfaces with crystals. Annu. Rev. Mater. Res. 36, 1–48 (2006)CrossRef
169.
Zurück zum Zitat K.A. Dick, C. Thelander, L. Samuelson, P. Caroff, Crystal phase engineering in single InAs nanowires. Nano Lett. 10, 3494–3499 (2010)CrossRef K.A. Dick, C. Thelander, L. Samuelson, P. Caroff, Crystal phase engineering in single InAs nanowires. Nano Lett. 10, 3494–3499 (2010)CrossRef
Metadaten
Titel
Vapor–Liquid–Solid Growth of Semiconductor Nanowires
verfasst von
Vladimir G. Dubrovskii
Frank Glas
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9050-4_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.