Skip to main content
Erschienen in: Journal of Materials Science 22/2020

04.05.2020 | Composites & nanocomposites

Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials

verfasst von: Yi Hu, Sun-Wai Chiang, Xiaodong Chu, Jia Li, Lin Gan, Yanbing He, Baohua Li, Feiyu Kang, Hongda Du

Erschienen in: Journal of Materials Science | Ausgabe 22/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Efficient thermal dissipation is one of the most critical factors constraining the development of modern microelectronic devices. Placing vertically aligned carbon nanotubes (VACNTs) with anisotropic thermal conductive between high-power devices and heat sink such as copper plate can improve the interfacial thermal conductance. Due to the limited contact area between CNTs and the surface of the devices, direct use of ACNTs as thermal interface material fails to meet people’s expectations. Here, we employ reduced graphene oxide (rGO) as the substrate for the growth of CNT arrays. VACNTs grown on rGO (rGO-ACNT) by chemical vapor deposition are then used as thermal conducting filler in epoxy resin. Compared with direct contact between CNT and the interface, using CNT and reduced graphene oxide junction to form contact with the surface can improve heat transfer efficiency. The resultant composite film exhibited excellent thermal conductivity at 9.62 W m−1 K−1 along the thickness direction. The obtained rGO-ACNT and its composite present higher thermal conductivity and heat transfer ability than ACNT. This strategy offers an insight into the easy preparation of flexible and highly thermal conductive composite materials, which may enable potential applications in advanced electronic devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zhong X, Wu X, Zhou W, Kuang S (2014) An all-sic high frequency boost dc-dc converter operating at 320°C junction temperature. IEEE Trans Power Electr 29:5091–5096CrossRef Zhong X, Wu X, Zhou W, Kuang S (2014) An all-sic high frequency boost dc-dc converter operating at 320°C junction temperature. IEEE Trans Power Electr 29:5091–5096CrossRef
3.
Zurück zum Zitat Razeeb KM, Dalton E, Cross GLW, Robinson AJ (2018) Present and future thermal interface materials for electronic devices. Int Mater Rev 63:1–21CrossRef Razeeb KM, Dalton E, Cross GLW, Robinson AJ (2018) Present and future thermal interface materials for electronic devices. Int Mater Rev 63:1–21CrossRef
4.
Zurück zum Zitat Hansson J, Nilsson TMJ, Ye L, Liu J, Chalmers UOT, Chalmers TH, Institutionen För Mikroteknologi Och Nanovetenskap EOS, Department Of Microtechnology And Nanoscience EMAS (2018) Novel nanostructured thermal interface materials: a review. Int Mater Rev 63:22–45CrossRef Hansson J, Nilsson TMJ, Ye L, Liu J, Chalmers UOT, Chalmers TH, Institutionen För Mikroteknologi Och Nanovetenskap EOS, Department Of Microtechnology And Nanoscience EMAS (2018) Novel nanostructured thermal interface materials: a review. Int Mater Rev 63:22–45CrossRef
5.
Zurück zum Zitat Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616CrossRef Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616CrossRef
6.
Zurück zum Zitat Zhang R, Wen Q, Qian W, Su DS, Zhang Q, Wei F (2011) Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv Mater 23:3387–3391CrossRef Zhang R, Wen Q, Qian W, Su DS, Zhang Q, Wei F (2011) Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv Mater 23:3387–3391CrossRef
7.
Zurück zum Zitat Marconnet AM, Panzer MA, Goodson KE (2013) Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev Mod Phys 85:1295–1326CrossRef Marconnet AM, Panzer MA, Goodson KE (2013) Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev Mod Phys 85:1295–1326CrossRef
8.
Zurück zum Zitat Cometto O, Sun B, Tsang SH, Huang X, Koh YK, Teo EH (2015) Vertically self-ordered orientation of nanocrystalline hexagonal boron nitride thin films for enhanced thermal characteristics. Nanoscale 7:18984–18991CrossRef Cometto O, Sun B, Tsang SH, Huang X, Koh YK, Teo EH (2015) Vertically self-ordered orientation of nanocrystalline hexagonal boron nitride thin films for enhanced thermal characteristics. Nanoscale 7:18984–18991CrossRef
10.
Zurück zum Zitat Ping L, Hou P, Liu C, Li J, Zhao Y, Zhang F, Ma C, Tai K, Cong H, Cheng H (2017) Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance. Nanoscale 9:8213–8219CrossRef Ping L, Hou P, Liu C, Li J, Zhao Y, Zhang F, Ma C, Tai K, Cong H, Cheng H (2017) Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance. Nanoscale 9:8213–8219CrossRef
11.
Zurück zum Zitat Tessonnier J, Su DS (2011) Recent progress on the growth mechanism of carbon nanotubes: a review. Chemsuschem 4:824–847CrossRef Tessonnier J, Su DS (2011) Recent progress on the growth mechanism of carbon nanotubes: a review. Chemsuschem 4:824–847CrossRef
12.
Zurück zum Zitat Cola BA, Xu J, Fisher TS (2009) Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int J Heat Mass Tran 52:3490–3503.CrossRef Cola BA, Xu J, Fisher TS (2009) Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int J Heat Mass Tran 52:3490–3503.CrossRef
14.
Zurück zum Zitat Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581CrossRef Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581CrossRef
15.
Zurück zum Zitat Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
16.
Zurück zum Zitat Schnorr JM, Swager TM (2011) Emerging applications of carbon nanotubes†. Chem Mater 23:646–657CrossRef Schnorr JM, Swager TM (2011) Emerging applications of carbon nanotubes†. Chem Mater 23:646–657CrossRef
18.
Zurück zum Zitat Varshney V, Patnaik SS, Roy AK, Froudakis G, Farmer BL (2010) Modeling of thermal transport in pillared-graphene architectures. ACS Nano 4:1153–1161CrossRef Varshney V, Patnaik SS, Roy AK, Froudakis G, Farmer BL (2010) Modeling of thermal transport in pillared-graphene architectures. ACS Nano 4:1153–1161CrossRef
21.
Zurück zum Zitat Zhu Y, Li L, Zhang C, Casillas G, Sun Z, Yan Z, Ruan G, Peng Z, Raji AO, Kittrell C, Hauge RH, Tour JM (2012) A seamless three-dimensional carbon nanotube graphene hybrid material. Nat Commun 3:1–7 Zhu Y, Li L, Zhang C, Casillas G, Sun Z, Yan Z, Ruan G, Peng Z, Raji AO, Kittrell C, Hauge RH, Tour JM (2012) A seamless three-dimensional carbon nanotube graphene hybrid material. Nat Commun 3:1–7
24.
Zurück zum Zitat Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758CrossRef Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758CrossRef
25.
Zurück zum Zitat Akoshima M, Hata K, Futaba DN, Mizuno K, Baba T, Yumura M (2009) Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method. Jpn J Appl Phys 48:5E–7ECrossRef Akoshima M, Hata K, Futaba DN, Mizuno K, Baba T, Yumura M (2009) Thermal diffusivity of single-walled carbon nanotube forest measured by laser flash method. Jpn J Appl Phys 48:5E–7ECrossRef
26.
Zurück zum Zitat Du F, Guthy C, Kashiwagi T, Fischer JE, Winey KI (2006) An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity. J Polym Sci Part B Polym Phys 44:1513–1519CrossRef Du F, Guthy C, Kashiwagi T, Fischer JE, Winey KI (2006) An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity. J Polym Sci Part B Polym Phys 44:1513–1519CrossRef
28.
Zurück zum Zitat Huang J, Gao M, Pan T, Zhang Y, Lin Y (2014) Effective thermal conductivity of epoxy matrix filled with poly(ethyleneimine) functionalized carbon nanotubes. Compos Sci Technol 95:16–20CrossRef Huang J, Gao M, Pan T, Zhang Y, Lin Y (2014) Effective thermal conductivity of epoxy matrix filled with poly(ethyleneimine) functionalized carbon nanotubes. Compos Sci Technol 95:16–20CrossRef
29.
Zurück zum Zitat Min C, Yu D, Cao J, Wang G, Feng L (2013) A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon 55:116–125CrossRef Min C, Yu D, Cao J, Wang G, Feng L (2013) A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon 55:116–125CrossRef
30.
Zurück zum Zitat Shahil KMF, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340CrossRef Shahil KMF, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340CrossRef
31.
Zurück zum Zitat Jung H, Yu S, Bae N, Cho SM, Kim RH, Cho SH, Hwang I, Jeong B, Ryu JS, Hwang J, Hong SM, Koo CM, Park C (2015) High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an l-shape kinked tube. ACS Appl Mater Interfaces 7:15256–15262CrossRef Jung H, Yu S, Bae N, Cho SM, Kim RH, Cho SH, Hwang I, Jeong B, Ryu JS, Hwang J, Hong SM, Koo CM, Park C (2015) High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an l-shape kinked tube. ACS Appl Mater Interfaces 7:15256–15262CrossRef
32.
Zurück zum Zitat Tang B, Hu G, Gao H, Hai L (2015) Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials. Int J Heat Mass Transf 85:420–429CrossRef Tang B, Hu G, Gao H, Hai L (2015) Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials. Int J Heat Mass Transf 85:420–429CrossRef
33.
Zurück zum Zitat Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet—carbon nanotube filler for epoxy composites. Adv Mater 20:4740–4744CrossRef Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet—carbon nanotube filler for epoxy composites. Adv Mater 20:4740–4744CrossRef
34.
Zurück zum Zitat Lian G, Tuan C, Li L, Jiao S, Wang Q, Moon K, Cui D, Wong C (2016) Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem Mater 28:6096–6104CrossRef Lian G, Tuan C, Li L, Jiao S, Wang Q, Moon K, Cui D, Wong C (2016) Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem Mater 28:6096–6104CrossRef
35.
Zurück zum Zitat Wang M, Chen H, Lin W, Li Z, Li Q, Chen M, Meng F, Xing Y, Yao Y, Wong C, Li Q (2013) Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal conductive composite film. ACS Appl Mater Interfaces 6:539–544CrossRef Wang M, Chen H, Lin W, Li Z, Li Q, Chen M, Meng F, Xing Y, Yao Y, Wong C, Li Q (2013) Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal conductive composite film. ACS Appl Mater Interfaces 6:539–544CrossRef
36.
Zurück zum Zitat Levchik SV, Weil ED (2010) Thermal decomposition, combustion and flame-retardancy of epoxy resins—a review of the recent literature. Polym Int 53:1901–1929CrossRef Levchik SV, Weil ED (2010) Thermal decomposition, combustion and flame-retardancy of epoxy resins—a review of the recent literature. Polym Int 53:1901–1929CrossRef
37.
Zurück zum Zitat Lee LH (1965) Mechanisms of thermal degradation of phenolic condensation polymers. Ii. Thermal stability and degradation schemes of epoxy resins. J Polym Sci Part A Gen Pap 3:859–882CrossRef Lee LH (1965) Mechanisms of thermal degradation of phenolic condensation polymers. Ii. Thermal stability and degradation schemes of epoxy resins. J Polym Sci Part A Gen Pap 3:859–882CrossRef
38.
Zurück zum Zitat Hawkins WL (2005) Polymer degradation and stabilization. Polym News 30:120–122CrossRef Hawkins WL (2005) Polymer degradation and stabilization. Polym News 30:120–122CrossRef
Metadaten
Titel
Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials
verfasst von
Yi Hu
Sun-Wai Chiang
Xiaodong Chu
Jia Li
Lin Gan
Yanbing He
Baohua Li
Feiyu Kang
Hongda Du
Publikationsdatum
04.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 22/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04681-9

Weitere Artikel der Ausgabe 22/2020

Journal of Materials Science 22/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.