Skip to main content

2013 | OriginalPaper | Buchkapitel

5. Viscosity Solutions and Large-Time Behavior for Non-Resonant Balance Laws

verfasst von : Laurent Gosse

Erschienen in: Computing Qualitatively Correct Approximations of Balance Laws

Verlag: Springer Milan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Our aim is now to summarize several rigorous results concerning BV solutions of general hyperbolic systems of balance laws with source terms about which no dissipation hypothesis is made. Results of this kind owe to the pioneering 1979 paper by Tai-Ping Liu [38], already quoted in Chapter 4, inside which an astute extension of the Glimm scheme [21] is studied in great detail. His existence theorems can be somewhat simplified when source terms are concentrated inside the whole Riemann fan instead of being localized in the middle of computational cells: hence the presentation adopted in [1] will be preferred. Uniqueness results were also proved in that more recent paper (a slightly less complete result was obtained in [24]). A second part in the chapter focuses onto decay results: first, positive (rarefaction) waves are handled following the paper [23]. Second, weak and strong decay results dealing with time-asymptotic behavior are recalled from [38]: as a consequence of the interaction potential’s decay, the BV solution endowed with constant states at infinity evolves toward a non-interacting wave pattern, which resembles more and more to the fan associated to the Riemann problem resolving that discontinuity. Inside the area |x| ≤ M where the source term is powerful, a steady-state profile, smooth solution of ∂ x f (u) = g(x, u) emerges as time passes whereas in the complementary domain, only homogeneous hyperbolic waves survive. In other words, this is exactly the setup for scattering theory, namely a wave phenomenon studied in a domain which is large compared to the characteristic scale of the interaction. The non-resonance assumption |∇f (u)| ≠ 0 is of paramount importance here because it ensures that convective waves never stagnate and exit the interval |x| ≤ M in finite time thus the solution cannot be amplified in an unbounded manner by the source term.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Amadori D., Gosse L., Guerra G.: Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws. Arch. Ration. Mech. Anal. 162, 327–366 (2002)CrossRefMATHMathSciNet Amadori D., Gosse L., Guerra G.: Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws. Arch. Ration. Mech. Anal. 162, 327–366 (2002)CrossRefMATHMathSciNet
2.
Zurück zum Zitat Amadori D., Gosse L., Guerra G.: Godunov-type approximation for a general resonant balance law with large data. J. Diff. Eqns. 198, 233–274 (2004)CrossRefMATHMathSciNet Amadori D., Gosse L., Guerra G.: Godunov-type approximation for a general resonant balance law with large data. J. Diff. Eqns. 198, 233–274 (2004)CrossRefMATHMathSciNet
4.
Zurück zum Zitat Amadori D., Guerra G.: Uniqueness and continuous dependence for systems of balance laws with dissipation. Nonlinear Anal. TMA 49, 987–1014 (2002)CrossRefMATHMathSciNet Amadori D., Guerra G.: Uniqueness and continuous dependence for systems of balance laws with dissipation. Nonlinear Anal. TMA 49, 987–1014 (2002)CrossRefMATHMathSciNet
5.
Zurück zum Zitat Ben-Artzi M., Falcovitz J.: Generalized Riemann problems in computational fluid dynamics. Cambridge monographs on applied and computational mathematics vol. 11 (2003) Ben-Artzi M., Falcovitz J.: Generalized Riemann problems in computational fluid dynamics. Cambridge monographs on applied and computational mathematics vol. 11 (2003)
6.
Zurück zum Zitat Bianchini S., Bressan A.: Vanishing viscosity solutions of nonlinear hyperbolic systems. Annals of Mathematics, 161, 223–342 (2005)CrossRefMATHMathSciNet Bianchini S., Bressan A.: Vanishing viscosity solutions of nonlinear hyperbolic systems. Annals of Mathematics, 161, 223–342 (2005)CrossRefMATHMathSciNet
7.
Zurück zum Zitat Bouchut F.: Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources. Frontiers in Mathematics series. Birkhäuser, Basel (2004)CrossRefMATH Bouchut F.: Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources. Frontiers in Mathematics series. Birkhäuser, Basel (2004)CrossRefMATH
8.
Zurück zum Zitat Bressan A.: The unique limit of the Glimm scheme. Arch. Rat. Mech. Anal. 130, 205–230 Bressan A.: The unique limit of the Glimm scheme. Arch. Rat. Mech. Anal. 130, 205–230
9.
Zurück zum Zitat Bressan A.: Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem. Oxford University Press, Oxford (2000)MATH Bressan A.: Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem. Oxford University Press, Oxford (2000)MATH
10.
Zurück zum Zitat Bressan A., Liu T.-P., Yang T.: L1 stability estimates for n × n conservation laws, Arch. Ration. Mech. Anal. 149(1), 1–22 (1999)CrossRefMATHMathSciNet Bressan A., Liu T.-P., Yang T.: L1 stability estimates for n × n conservation laws, Arch. Ration. Mech. Anal. 149(1), 1–22 (1999)CrossRefMATHMathSciNet
11.
Zurück zum Zitat Chen G.-Q., Glimm J.: Global solutions to the compressible Euler equations with geometrical structure. Comm. Math. Phys. 180(1), 153–193 (1996)CrossRefMATHMathSciNet Chen G.-Q., Glimm J.: Global solutions to the compressible Euler equations with geometrical structure. Comm. Math. Phys. 180(1), 153–193 (1996)CrossRefMATHMathSciNet
12.
Zurück zum Zitat Chen G.-Q., Levermore C.D., Liu T.P.: Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Applied Math. 47, 787–830 (1994)CrossRefMATHMathSciNet Chen G.-Q., Levermore C.D., Liu T.P.: Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Applied Math. 47, 787–830 (1994)CrossRefMATHMathSciNet
13.
Zurück zum Zitat Clarke J.F., Lowe C.A.: Combustion with Source Flows. Math. Comput. Modelling 24, 95–104 (1996)CrossRefMATH Clarke J.F., Lowe C.A.: Combustion with Source Flows. Math. Comput. Modelling 24, 95–104 (1996)CrossRefMATH
14.
Zurück zum Zitat Clarke J.F., Lowe C.A.: A Class of Exact Solutions for the Euler Equations with Sources: Part I. Math. Comput. Modelling 36, 275–291 (2002)CrossRefMATHMathSciNet Clarke J.F., Lowe C.A.: A Class of Exact Solutions for the Euler Equations with Sources: Part I. Math. Comput. Modelling 36, 275–291 (2002)CrossRefMATHMathSciNet
15.
Zurück zum Zitat Clarke J.F., Lowe C.A.: A Class of Exact Solutions for the Euler Equations with Sources: Part II. Math. Comput. Modelling 38, 1101–1117 (2003)CrossRefMATHMathSciNet Clarke J.F., Lowe C.A.: A Class of Exact Solutions for the Euler Equations with Sources: Part II. Math. Comput. Modelling 38, 1101–1117 (2003)CrossRefMATHMathSciNet
16.
Zurück zum Zitat Crasta G., Piccoli B.: Viscosity solutions and uniqueness for systems of inhomogeneous balance laws. Discrete Contin. Dynam. Systems 3, 477–502 (1997)CrossRefMATHMathSciNet Crasta G., Piccoli B.: Viscosity solutions and uniqueness for systems of inhomogeneous balance laws. Discrete Contin. Dynam. Systems 3, 477–502 (1997)CrossRefMATHMathSciNet
17.
Zurück zum Zitat Dafermos C., Hsiao L.: Hyperbolic Systems of Balance Laws with Inhomogeneity and Dissipation. Indiana U. Math. J. 31, 471–491 (1982)CrossRefMATHMathSciNet Dafermos C., Hsiao L.: Hyperbolic Systems of Balance Laws with Inhomogeneity and Dissipation. Indiana U. Math. J. 31, 471–491 (1982)CrossRefMATHMathSciNet
18.
Zurück zum Zitat Dafermos C., Pan R.: Global BV solutions for the p-system with frisctional damping. SIAM J. Math. Anal. 41, 1190–1205 (2010)CrossRefMATH Dafermos C., Pan R.: Global BV solutions for the p-system with frisctional damping. SIAM J. Math. Anal. 41, 1190–1205 (2010)CrossRefMATH
19.
Zurück zum Zitat Dal Maso G., LeFloch P.G., Murat F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74, 483–548 (1995)MATHMathSciNet Dal Maso G., LeFloch P.G., Murat F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74, 483–548 (1995)MATHMathSciNet
20.
21.
22.
Zurück zum Zitat Goatin P.: One Sided Estimates and Uniqueness for Hyperbolic Systems of Balance Laws. Math. Models Methods Appl. Sci. 13(4), 527–543 (2003)CrossRefMATHMathSciNet Goatin P.: One Sided Estimates and Uniqueness for Hyperbolic Systems of Balance Laws. Math. Models Methods Appl. Sci. 13(4), 527–543 (2003)CrossRefMATHMathSciNet
23.
Zurück zum Zitat Goatin P., Gosse L.: Decay of Positive Waves for n × n Hyperbolic Systems of Balance Laws. Proc. Amer. Math. Soc. 132(6), 1627–1637 (2004)CrossRefMATHMathSciNet Goatin P., Gosse L.: Decay of Positive Waves for n × n Hyperbolic Systems of Balance Laws. Proc. Amer. Math. Soc. 132(6), 1627–1637 (2004)CrossRefMATHMathSciNet
24.
Zurück zum Zitat Ha S.-Y.: L1 stability for systems of conservation laws with a non-resonant moving source. SIAM. J. Math. Anal. 33, 411–439 (2001)CrossRefMATHMathSciNet Ha S.-Y.: L1 stability for systems of conservation laws with a non-resonant moving source. SIAM. J. Math. Anal. 33, 411–439 (2001)CrossRefMATHMathSciNet
25.
Zurück zum Zitat Ha S.-Y., Yang T.: L1 Stability for Systems of Hyperbolic Conservation Laws with a Resonant Moving Source. SIAM J. Math. Anal. 34, 1226–1251 (2003)CrossRefMATHMathSciNet Ha S.-Y., Yang T.: L1 Stability for Systems of Hyperbolic Conservation Laws with a Resonant Moving Source. SIAM J. Math. Anal. 34, 1226–1251 (2003)CrossRefMATHMathSciNet
26.
Zurück zum Zitat Härterich J., Liebscher S.: Travelling Waves in Systems of Hyperbolic Balance Laws. In: Warnecke (ed.) Analysis and Numerics for Conservation Laws, pp. 281–300. Springer-Verlag. Berlin Heidelberg (2005) Härterich J., Liebscher S.: Travelling Waves in Systems of Hyperbolic Balance Laws. In: Warnecke (ed.) Analysis and Numerics for Conservation Laws, pp. 281–300. Springer-Verlag. Berlin Heidelberg (2005)
27.
Zurück zum Zitat Hoff D.: The sharp form of Oleĭnik’s entropy condition in several space variables. Trans. Amer. Math. Soc. 276, 707–714 (1983)MATHMathSciNet Hoff D.: The sharp form of Oleĭnik’s entropy condition in several space variables. Trans. Amer. Math. Soc. 276, 707–714 (1983)MATHMathSciNet
28.
Zurück zum Zitat Hong J.M.: An extension of Glimm’s method to inhomogeneous strictly hyperbolic systems of conservation laws by “weaker than weak” solutions of the Riemann problem. J. Diff. Equ. 222, 515-549(2006)CrossRefMATHMathSciNet Hong J.M.: An extension of Glimm’s method to inhomogeneous strictly hyperbolic systems of conservation laws by “weaker than weak” solutions of the Riemann problem. J. Diff. Equ. 222, 515-549(2006)CrossRefMATHMathSciNet
29.
Zurück zum Zitat Hong J.M., Temple B.: The generic solution of the Riemann problem in a neighborhood of a point of resonance for systems of nonlinear balance laws. Methods Appl. Anal. 10, 279–294 (2003)MATHMathSciNet Hong J.M., Temple B.: The generic solution of the Riemann problem in a neighborhood of a point of resonance for systems of nonlinear balance laws. Methods Appl. Anal. 10, 279–294 (2003)MATHMathSciNet
30.
Zurück zum Zitat Hong J.M., Temple B.: A bound on the total variation of the conserved quantities for solutions of a general resonant nonlinear balance law. SIAM J. Appl. Math. 64, 819–857 (2004)CrossRefMATHMathSciNet Hong J.M., Temple B.: A bound on the total variation of the conserved quantities for solutions of a general resonant nonlinear balance law. SIAM J. Appl. Math. 64, 819–857 (2004)CrossRefMATHMathSciNet
31.
Zurück zum Zitat Hua J.: Systems of hyperbolic conservation laws with a resonant moving source. J. Differential Equations 245, 337–358 (2008)CrossRefMATHMathSciNet Hua J.: Systems of hyperbolic conservation laws with a resonant moving source. J. Differential Equations 245, 337–358 (2008)CrossRefMATHMathSciNet
32.
Zurück zum Zitat Isaacson E., Temple B.: Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55, 625–640 (1995)CrossRefMATHMathSciNet Isaacson E., Temple B.: Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55, 625–640 (1995)CrossRefMATHMathSciNet
33.
Zurück zum Zitat Jin S., Levermore C.D.: Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms. J. Comp. Phys. 126, 449–467 (1996)CrossRefMATHMathSciNet Jin S., Levermore C.D.: Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms. J. Comp. Phys. 126, 449–467 (1996)CrossRefMATHMathSciNet
35.
Zurück zum Zitat LeFloch P., Tzavaras A.E.: Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30, 1309–1342 (1999)CrossRefMATHMathSciNet LeFloch P., Tzavaras A.E.: Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30, 1309–1342 (1999)CrossRefMATHMathSciNet
36.
Zurück zum Zitat Li C., Liu T.P.: Asymptotic states for hyperbolic conservation laws with a moving source. Advances in Appl. Math. 4, 353–379 (1983)CrossRefMATHMathSciNet Li C., Liu T.P.: Asymptotic states for hyperbolic conservation laws with a moving source. Advances in Appl. Math. 4, 353–379 (1983)CrossRefMATHMathSciNet
41.
Zurück zum Zitat Oleènik O.: Discontinuous solutions of nonlinear differential equations Uspekhi Mat. Nauk 12, 3–73 (1957) [English transl. in Amer. Math. Soc. Transl. Ser. 2 26, 95–172 (1963)] Oleènik O.: Discontinuous solutions of nonlinear differential equations Uspekhi Mat. Nauk 12, 3–73 (1957) [English transl. in Amer. Math. Soc. Transl. Ser. 2 26, 95–172 (1963)]
42.
Zurück zum Zitat Weinan E: Homogenization of scalar conservation laws with oscillatory forcing terms. SIAM J. Appl. Math. 52, 959–972 (1992)CrossRefMATHMathSciNet Weinan E: Homogenization of scalar conservation laws with oscillatory forcing terms. SIAM J. Appl. Math. 52, 959–972 (1992)CrossRefMATHMathSciNet
Metadaten
Titel
Viscosity Solutions and Large-Time Behavior for Non-Resonant Balance Laws
verfasst von
Laurent Gosse
Copyright-Jahr
2013
Verlag
Springer Milan
DOI
https://doi.org/10.1007/978-88-470-2892-0_5