Skip to main content
Erschienen in: Cognitive Computation 5/2018

14.06.2018

Visual and Category Representations Shaped by the Interaction Between Inferior Temporal and Prefrontal Cortices

verfasst von: Yuki Abe, Kazuhisa Fujita, Yoshiki Kashimori

Erschienen in: Cognitive Computation | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ability to group items and events into functional categories is a fundamental function for visual recognition. Experimental studies have shown the different roles in information representations of inferior temporal (IT) and prefrontal cortices (PFC) in a categorization task. However, it remains elusive how category information is generated in PFC and maintained in a delay period and how the interaction between IT and PFC influences category performance. To address these issues, we develop a network model of visual system, which performs a delayed match-to-category task. The model consists of networks of V4, IT, and PFC. We show that in IT visual information required for categorization is represented by a combination of prototype features. We also show that category information in PFC is represented by two dynamical attractors weakly linked, resulting from the difference in firing thresholds of PFC neurons. Lower and higher firing thresholds contribute to working memory maintenance and decision-making, respectively. Furthermore, we show that top-down signal from PFC to IT improves the ability of PFC neurons to categorize the mixed images that are closer to a category boundary. Our model may provide a clue for understanding the neural mechanism underlying categorization task.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mishkin M, Ungerleider LG, Macko KA. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 1983;6:414–7.CrossRef Mishkin M, Ungerleider LG, Macko KA. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 1983;6:414–7.CrossRef
2.
Zurück zum Zitat Ungerleider LG, Mishkin M. Two cortical visual systems. Ingle DJ et al. editors. Analysis of visual behavior, pages 549–586, The MIT Press; 1982. Ungerleider LG, Mishkin M. Two cortical visual systems. Ingle DJ et al. editors. Analysis of visual behavior, pages 549–586, The MIT Press; 1982.
3.
Zurück zum Zitat Bruce C, Desimone R, Gross CG. Visual properties of neurons in a polysensory area in superior temporal sulcus in the macaque. J Neurophysiol. 1981;46:369–84.CrossRefPubMed Bruce C, Desimone R, Gross CG. Visual properties of neurons in a polysensory area in superior temporal sulcus in the macaque. J Neurophysiol. 1981;46:369–84.CrossRefPubMed
4.
Zurück zum Zitat Desimone R, Albright TD, Gross CG, Bruce C. Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci. 1984;4:2051–62.CrossRefPubMed Desimone R, Albright TD, Gross CG, Bruce C. Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci. 1984;4:2051–62.CrossRefPubMed
5.
Zurück zum Zitat Gross CG. Visual functions of inferotemporal cortex. In: Autrum H, Jung R, Loewenstein WR, Mckay D, Teuber HL, editors. Handbook of sensory physiology, Vol. VII/3B. Berlin: Springer; 1973. p. 451–82. Gross CG. Visual functions of inferotemporal cortex. In: Autrum H, Jung R, Loewenstein WR, Mckay D, Teuber HL, editors. Handbook of sensory physiology, Vol. VII/3B. Berlin: Springer; 1973. p. 451–82.
6.
Zurück zum Zitat Logothetis NK, Sheinberg DL. Visual object recognition. Annu Rev Neurosci. 1996;19:577–621.CrossRefPubMed Logothetis NK, Sheinberg DL. Visual object recognition. Annu Rev Neurosci. 1996;19:577–621.CrossRefPubMed
7.
Zurück zum Zitat Perrett DI, Rolls ET, Caan W. Visual neurons responsive to faces in the monkey temporal cortex. Exp Brain Res. 1982;47:329–42.CrossRefPubMed Perrett DI, Rolls ET, Caan W. Visual neurons responsive to faces in the monkey temporal cortex. Exp Brain Res. 1982;47:329–42.CrossRefPubMed
8.
Zurück zum Zitat Tanaka K. Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. Cereb Cortex. 2003;13:90–9.CrossRefPubMed Tanaka K. Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. Cereb Cortex. 2003;13:90–9.CrossRefPubMed
9.
Zurück zum Zitat Baker CI, Behrmann M, Olson CR. Impact of learniong on representation of parts and wholes in monkey inferotemporal cortex. Nat Neurosci. 2002;5:1210–6.CrossRefPubMed Baker CI, Behrmann M, Olson CR. Impact of learniong on representation of parts and wholes in monkey inferotemporal cortex. Nat Neurosci. 2002;5:1210–6.CrossRefPubMed
10.
Zurück zum Zitat Booth MC, Rolls ET. View-invariant representations of familiar objects by neurons in the inferior temporal cortex. Cereb Cortex. 1998;8:510–23.CrossRefPubMed Booth MC, Rolls ET. View-invariant representations of familiar objects by neurons in the inferior temporal cortex. Cereb Cortex. 1998;8:510–23.CrossRefPubMed
11.
Zurück zum Zitat Kobatake E, Wang G, Tanaka K. Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J Neurophysiol. 1998;80:324–30.CrossRefPubMed Kobatake E, Wang G, Tanaka K. Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J Neurophysiol. 1998;80:324–30.CrossRefPubMed
12.
Zurück zum Zitat Logothetis NK, Pauls J, Possio T. Shape representation in the inferior temporal cortex of monkeys. Curr Biol. 1995;5:552–63.CrossRefPubMed Logothetis NK, Pauls J, Possio T. Shape representation in the inferior temporal cortex of monkeys. Curr Biol. 1995;5:552–63.CrossRefPubMed
13.
Zurück zum Zitat Miyashita Y. Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature. 1988;335:817–20.CrossRefPubMed Miyashita Y. Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature. 1988;335:817–20.CrossRefPubMed
14.
16.
Zurück zum Zitat Ungerleider LG, Gaffan D, Pelak VS. Projections from inferior temporal cortex to prefrontal cortex via the uncinated fascicle in rhesus monkeys. Exp Brain Res. 1989;76:473–84.CrossRefPubMed Ungerleider LG, Gaffan D, Pelak VS. Projections from inferior temporal cortex to prefrontal cortex via the uncinated fascicle in rhesus monkeys. Exp Brain Res. 1989;76:473–84.CrossRefPubMed
17.
Zurück zum Zitat Webster MJ, Bachevalier J, Ungerleider LG. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex. 1994;4:470–83.CrossRefPubMed Webster MJ, Bachevalier J, Ungerleider LG. Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex. 1994;4:470–83.CrossRefPubMed
18.
Zurück zum Zitat Vogels R. Categorization of complex visual images by rhesus monkeys. Part 2: single cell study. Eur J Neurosci. 1999;11:1239–55.CrossRefPubMed Vogels R. Categorization of complex visual images by rhesus monkeys. Part 2: single cell study. Eur J Neurosci. 1999;11:1239–55.CrossRefPubMed
19.
Zurück zum Zitat Sigala N, Logothetis NK. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature. 2002;415:318–20.CrossRefPubMed Sigala N, Logothetis NK. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature. 2002;415:318–20.CrossRefPubMed
20.
Zurück zum Zitat Soga M, Kashimori Y. Functional connections between visual areas in extracting object features critical for a visual categorization task. Vis Res. 2009;49:337–47.CrossRefPubMed Soga M, Kashimori Y. Functional connections between visual areas in extracting object features critical for a visual categorization task. Vis Res. 2009;49:337–47.CrossRefPubMed
21.
Zurück zum Zitat Freedman DJ, Riesenhuber M, Poggio T, Miller EK. A comparison of primate pre-frontal and inferior temporal cortices during visual categorization. J Neurosci. 2003;23:5235–46.CrossRefPubMed Freedman DJ, Riesenhuber M, Poggio T, Miller EK. A comparison of primate pre-frontal and inferior temporal cortices during visual categorization. J Neurosci. 2003;23:5235–46.CrossRefPubMed
22.
Zurück zum Zitat Mckee JL, Riesenhuber M, Miller EK, Freedman DJ. Task dependence of visual and category representations in prefrontal and inferior temporal cortices. J Neurosci. 2014;34:16065–75.CrossRefPubMedPubMedCentral Mckee JL, Riesenhuber M, Miller EK, Freedman DJ. Task dependence of visual and category representations in prefrontal and inferior temporal cortices. J Neurosci. 2014;34:16065–75.CrossRefPubMedPubMedCentral
23.
24.
Zurück zum Zitat Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M. Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci. 2001;4:832–8.CrossRefPubMed Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M. Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci. 2001;4:832–8.CrossRefPubMed
25.
Zurück zum Zitat Yamane Y, Tsunoda K, Matsumoto K, Phillips A, Tanifuji M. Representation of the spatial relationship among object parts by neurons in macaque inferotemporal cortex. J Neurophysiol. 2006;96:3147–56.CrossRefPubMed Yamane Y, Tsunoda K, Matsumoto K, Phillips A, Tanifuji M. Representation of the spatial relationship among object parts by neurons in macaque inferotemporal cortex. J Neurophysiol. 2006;96:3147–56.CrossRefPubMed
26.
Zurück zum Zitat De Baene W, Ons B, Wagemans J, Vogels R. Effects of category learning on the stimulus selectivity of macaque inferior temporal neurons. Learn Mem. 2008;15:717–27.CrossRefPubMed De Baene W, Ons B, Wagemans J, Vogels R. Effects of category learning on the stimulus selectivity of macaque inferior temporal neurons. Learn Mem. 2008;15:717–27.CrossRefPubMed
27.
Zurück zum Zitat Wang XJ. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 2001;24:455–63.CrossRefPubMed Wang XJ. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 2001;24:455–63.CrossRefPubMed
28.
Zurück zum Zitat Vitay J, Hamkar FH. Sustained activities and retrieval in a computational model of the perirhinal cortex. J Cogn Neurosci. 2008;20:1993–2005.CrossRefPubMed Vitay J, Hamkar FH. Sustained activities and retrieval in a computational model of the perirhinal cortex. J Cogn Neurosci. 2008;20:1993–2005.CrossRefPubMed
29.
Zurück zum Zitat Freedman DJ, Riesenhuber M, Possio T, Miller EK. Categorical representation of visual stimuli in the primate prefrontal cortex. Science. 2001;291:312–6.CrossRefPubMed Freedman DJ, Riesenhuber M, Possio T, Miller EK. Categorical representation of visual stimuli in the primate prefrontal cortex. Science. 2001;291:312–6.CrossRefPubMed
30.
Zurück zum Zitat Freedman DJ, Riesenhuber M, Poggio T, Miller EK. Visual categorization and the primate prefrontal cortex: neurophysiology and behavior. J Neurophysiol. 2002;88:929–41.CrossRefPubMed Freedman DJ, Riesenhuber M, Poggio T, Miller EK. Visual categorization and the primate prefrontal cortex: neurophysiology and behavior. J Neurophysiol. 2002;88:929–41.CrossRefPubMed
31.
32.
Zurück zum Zitat Fusi S, Miller EK, Rigotti M. Why neurons mix: high dimensionality for higher cognition. Curr Opin Neurobiol. 2016;37:66–74.CrossRefPubMed Fusi S, Miller EK, Rigotti M. Why neurons mix: high dimensionality for higher cognition. Curr Opin Neurobiol. 2016;37:66–74.CrossRefPubMed
33.
34.
Zurück zum Zitat Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND, Miller EK, et al. The importance of mixed selectivity in complex cognitive tasks. Nature. 2013;497:585–90.CrossRefPubMedPubMedCentral Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND, Miller EK, et al. The importance of mixed selectivity in complex cognitive tasks. Nature. 2013;497:585–90.CrossRefPubMedPubMedCentral
35.
36.
Zurück zum Zitat Kohonen T. Self-organizing maps. Third, extended edition, volume 30 of Springer series in information sciences, Springer, NY. 2001. Kohonen T. Self-organizing maps. Third, extended edition, volume 30 of Springer series in information sciences, Springer, NY. 2001.
37.
Zurück zum Zitat Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neural selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2:32–48.CrossRefPubMed Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neural selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2:32–48.CrossRefPubMed
38.
Zurück zum Zitat Lim S, McKee JI, Woloszyn L, Amit Y, Freedman DJ, Sheinberg D, et al. Inferring learning rules from distributions of firing rates in cortical neurons. Nat Neurosci. 2015;18:1804–10.CrossRefPubMedPubMedCentral Lim S, McKee JI, Woloszyn L, Amit Y, Freedman DJ, Sheinberg D, et al. Inferring learning rules from distributions of firing rates in cortical neurons. Nat Neurosci. 2015;18:1804–10.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Hoshino O, Inoue S, Kashimori Y, Kambara T. A hierarchical dynamical map as a basic frame for cortical mapping and its application to priming. Neural Comput. 2001;13(8):1781–810.CrossRefPubMed Hoshino O, Inoue S, Kashimori Y, Kambara T. A hierarchical dynamical map as a basic frame for cortical mapping and its application to priming. Neural Comput. 2001;13(8):1781–810.CrossRefPubMed
40.
Zurück zum Zitat Durstewitz D, Seamans JK, Sejnowski TJ. Neurocomputational models of working memory. Nat Neurosci. 2000;3:1184–91.CrossRefPubMed Durstewitz D, Seamans JK, Sejnowski TJ. Neurocomputational models of working memory. Nat Neurosci. 2000;3:1184–91.CrossRefPubMed
41.
Zurück zum Zitat Amit DJ, Brunel N. Model of global spontaneous activity and local structured activity during delay period in the cerebral cortex. Cereb Cortex. 1997;7:237–52.CrossRefPubMed Amit DJ, Brunel N. Model of global spontaneous activity and local structured activity during delay period in the cerebral cortex. Cereb Cortex. 1997;7:237–52.CrossRefPubMed
42.
Zurück zum Zitat Amit DJ, Fusi S, Yakovlev V. Paradigmatic working memory (attractor) cell in IT cortex. Neural Comput. 1997;9:1071–92.CrossRefPubMed Amit DJ, Fusi S, Yakovlev V. Paradigmatic working memory (attractor) cell in IT cortex. Neural Comput. 1997;9:1071–92.CrossRefPubMed
43.
Zurück zum Zitat Compte A, Brunel N, Goldman-Rakic PS, Wang XJ. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex. 2000;10:910–23.CrossRefPubMed Compte A, Brunel N, Goldman-Rakic PS, Wang XJ. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex. 2000;10:910–23.CrossRefPubMed
44.
Zurück zum Zitat Durstewitz D, Seamans JK, Sejnowski TJ. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol. 2000;83:1733–50.CrossRefPubMed Durstewitz D, Seamans JK, Sejnowski TJ. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol. 2000;83:1733–50.CrossRefPubMed
45.
Zurück zum Zitat Meyers EM, Freedman DJ, Kreiman G, Miller EK, Poggio T. Dynamic population coding of category information in inferior temporal and prefrontal cortex. J Neurophysiol. 2008;100:1407–19.CrossRefPubMedPubMedCentral Meyers EM, Freedman DJ, Kreiman G, Miller EK, Poggio T. Dynamic population coding of category information in inferior temporal and prefrontal cortex. J Neurophysiol. 2008;100:1407–19.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Stokes MG, Kusunoki M, Sigala N, Nili H, Gaffan D, Duncan J. Dynamic coding for cognitive control in prefrontal cortex. Neuron. 2013;78:364–75.CrossRefPubMedPubMedCentral Stokes MG, Kusunoki M, Sigala N, Nili H, Gaffan D, Duncan J. Dynamic coding for cognitive control in prefrontal cortex. Neuron. 2013;78:364–75.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Sussillo D, Toyoizumi T, Mass W. Self-tuning of neural circuits through short-term synaptic plasticity. J Neurophysiol. 2007;97:4079–95.CrossRefPubMed Sussillo D, Toyoizumi T, Mass W. Self-tuning of neural circuits through short-term synaptic plasticity. J Neurophysiol. 2007;97:4079–95.CrossRefPubMed
48.
Zurück zum Zitat Mongillo G, Barak O, Tsodyks M. Synaptic theory of working memory. Science. 2008;319:1543–6.CrossRefPubMed Mongillo G, Barak O, Tsodyks M. Synaptic theory of working memory. Science. 2008;319:1543–6.CrossRefPubMed
50.
Zurück zum Zitat Chaisangmongkon W, Swaminathan SK, Freedman DJ, Wang JX. Computing by robust transience: how the front-parietal network performs sequential, category-based decisions. Neuron. 2017;93:1504–17.CrossRefPubMedPubMedCentral Chaisangmongkon W, Swaminathan SK, Freedman DJ, Wang JX. Computing by robust transience: how the front-parietal network performs sequential, category-based decisions. Neuron. 2017;93:1504–17.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2:1019–25.CrossRefPubMed Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci. 1999;2:1019–25.CrossRefPubMed
52.
Zurück zum Zitat Riesenhuber M, Poggio T. Neural mechanisms of object recognition. Curr Opin Neurobiol. 2002;12:162–8.CrossRefPubMed Riesenhuber M, Poggio T. Neural mechanisms of object recognition. Curr Opin Neurobiol. 2002;12:162–8.CrossRefPubMed
53.
Zurück zum Zitat Knoblich U, Freedman DJ, Riesenhuber M. Categorization in IT and PFC; model and experiments, vol. 2002-007. Cambridge: MIT AI Laboratory; 2002. Knoblich U, Freedman DJ, Riesenhuber M. Categorization in IT and PFC; model and experiments, vol. 2002-007. Cambridge: MIT AI Laboratory; 2002.
54.
Zurück zum Zitat Minami T, Inui T. Roles of prefrontal neurons in delayed maching-to-category task: a modeling study. Neurocomputing. 2005;65-66:609–16.CrossRef Minami T, Inui T. Roles of prefrontal neurons in delayed maching-to-category task: a modeling study. Neurocomputing. 2005;65-66:609–16.CrossRef
55.
Zurück zum Zitat Pannunzi M, Gigante G, Mattia M, Deco D, Fusi S, Giudice PD. Learning selective top-down control enhances performance in a visual categorization task. J Neurophysiol. 2012;108:3124–37.CrossRefPubMed Pannunzi M, Gigante G, Mattia M, Deco D, Fusi S, Giudice PD. Learning selective top-down control enhances performance in a visual categorization task. J Neurophysiol. 2012;108:3124–37.CrossRefPubMed
56.
Zurück zum Zitat Ding S, Meng L, Han Y, Xue Y. A review of feature binding theory and its functions observed in perceptual process. Cogn Comput. 2017;9:194–206.CrossRef Ding S, Meng L, Han Y, Xue Y. A review of feature binding theory and its functions observed in perceptual process. Cogn Comput. 2017;9:194–206.CrossRef
57.
Zurück zum Zitat Jamalian A, Beuth F, Hamkar FH. The performance of a biologically plausible model of visual attention to localize objects in a virtual reality. In: Villa AEP, et al., editors. Notes in Computer Science, vol. 9887. Switzerland: Springer International Publishing; 2016. p. 447–54. Jamalian A, Beuth F, Hamkar FH. The performance of a biologically plausible model of visual attention to localize objects in a virtual reality. In: Villa AEP, et al., editors. Notes in Computer Science, vol. 9887. Switzerland: Springer International Publishing; 2016. p. 447–54.
58.
Zurück zum Zitat Wyatte D, Curran T, O’Relly R. The limit of feedforward vision: recurrent processing promotes robust object recognition when objects are degraded. J Cogn Neurosci. 2012;24:2248–61.CrossRefPubMed Wyatte D, Curran T, O’Relly R. The limit of feedforward vision: recurrent processing promotes robust object recognition when objects are degraded. J Cogn Neurosci. 2012;24:2248–61.CrossRefPubMed
59.
Zurück zum Zitat Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222.CrossRefPubMed Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222.CrossRefPubMed
60.
Zurück zum Zitat Reynolds JH, Pasternak T, Desimone R. Attention increases sensitivity of V4 neurons. Neuron. 2000;26:703–14.CrossRefPubMed Reynolds JH, Pasternak T, Desimone R. Attention increases sensitivity of V4 neurons. Neuron. 2000;26:703–14.CrossRefPubMed
61.
Zurück zum Zitat Azouz R, Gray CM. Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neuron in vivo. Proc Natl Acad Science U S A. 2000;97:8110–5.CrossRef Azouz R, Gray CM. Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neuron in vivo. Proc Natl Acad Science U S A. 2000;97:8110–5.CrossRef
62.
Zurück zum Zitat Azouz R, Gray CM. Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo. Neuron. 2003;37:513–23.CrossRefPubMed Azouz R, Gray CM. Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo. Neuron. 2003;37:513–23.CrossRefPubMed
63.
Zurück zum Zitat Wang Y, Markram H, Goodman PH, Berger TK, Ma J, Goldman-Rakic PS. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat Neurosci. 2006;9:534–42.CrossRefPubMed Wang Y, Markram H, Goodman PH, Berger TK, Ma J, Goldman-Rakic PS. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat Neurosci. 2006;9:534–42.CrossRefPubMed
64.
Zurück zum Zitat Rainer G, Miller EK. Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task. Eur J Neurosci. 2002;15:1244–54.CrossRefPubMed Rainer G, Miller EK. Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task. Eur J Neurosci. 2002;15:1244–54.CrossRefPubMed
65.
Zurück zum Zitat Rainer G, Rao SC, Miller EK. Prospective coding for objects in primate prefrontal cortex. J Neurosci. 1999;19:5493–505.CrossRefPubMed Rainer G, Rao SC, Miller EK. Prospective coding for objects in primate prefrontal cortex. J Neurosci. 1999;19:5493–505.CrossRefPubMed
66.
Zurück zum Zitat Rao RPN, Ballard DH. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999;2(1):79–87.CrossRefPubMed Rao RPN, Ballard DH. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999;2(1):79–87.CrossRefPubMed
67.
Zurück zum Zitat Spratling MW. A hierarchical predictive coding model of object recognition in natural images. Cogn Comput. 2017;9:151–67.CrossRef Spratling MW. A hierarchical predictive coding model of object recognition in natural images. Cogn Comput. 2017;9:151–67.CrossRef
68.
Zurück zum Zitat Arnal LH, Giraud A-L. Cortical oscillations and sensory predictions. Trends Cogn Neurosci. 2012;16:390–8.CrossRef Arnal LH, Giraud A-L. Cortical oscillations and sensory predictions. Trends Cogn Neurosci. 2012;16:390–8.CrossRef
Metadaten
Titel
Visual and Category Representations Shaped by the Interaction Between Inferior Temporal and Prefrontal Cortices
verfasst von
Yuki Abe
Kazuhisa Fujita
Yoshiki Kashimori
Publikationsdatum
14.06.2018
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 5/2018
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-018-9570-0

Weitere Artikel der Ausgabe 5/2018

Cognitive Computation 5/2018 Zur Ausgabe

Premium Partner