Skip to main content

2023 | OriginalPaper | Buchkapitel

3. Wind Turbine Wake Redirection via External Vanes

verfasst von : Reza Nouri, Ryan R. Nash, Ahmad Vasel-Be-Hagh

Erschienen in: Responsible Engineering and Living

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aerodynamic interactions of wind turbines are a wind farm’s most significant source of energy loss. Every wind turbine creates a low-speed, highly turbulent, plume-like airflow called a “wake.” To minimize the said losses, one needs to reduce the overall exposure to upstream turbines’ wakes. One can achieve this goal by optimizing the farm’s layout and actively controlling the parameters that can either steer or weaken the wake, such as yaw or pitch angles. Both practices, i.e., layout optimization and active yaw control, are still insufficient, leaving the wind farms as one of the least power-dense forms of plants with a power density of 1–2 W/m2. In this article, we propose the application of external vanes to steer the wake from downstream turbines in real time. While acknowledging that implementing this strategy with a current technology readiness level of 1 is not easy, this research only serves as a preliminary proof of concept demonstrating this idea’s effectiveness. The study utilized large-eddy simulations and an inline, three-turbine configuration. It revealed that a sizeable external vane between the front- and the second-row turbines increased the production of the second and third turbines by approximately 45% and 42%, respectively, which is significant compared to all other studied active wake control strategies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat C.L. Archer, S. Wu, A. Vasel-Be-Hagh, J.F. Brodie, R. Delgado, A.S. Pé, S. Oncley, S. Semmer, The VERTEX field Campaign: observations of near-ground effects of wind turbine wakes. J. Turbul. 20(1), 64–92 (2019). C.L. Archer, S. Wu, A. Vasel-Be-Hagh, J.F. Brodie, R. Delgado, A.S. Pé, S. Oncley, S. Semmer, The VERTEX field Campaign: observations of near-ground effects of wind turbine wakes. J. Turbul. 20(1), 64–92 (2019).
3.
Zurück zum Zitat J.Å. Dahlberg, Assesment of the Lillgrund Windfarm: power performance, wake effects. Tech. Rep. 6.1 Lillgrund Pilot Project; Vattenfall Vindkraft AB; 2009 J.Å. Dahlberg, Assesment of the Lillgrund Windfarm: power performance, wake effects. Tech. Rep. 6.1 Lillgrund Pilot Project; Vattenfall Vindkraft AB; 2009
4.
Zurück zum Zitat R.J. Barthelmie, S. Pryor, S.T. Frandsen, K.S. Hansen, J. Schepers, K. Rados, W. Schlez, A. Neubert, L. Jensen, S. Neckelmann, Quantifying the impact of wind turbine wakes on power output at offshore wind farms. J. Atmos. Ocean. Technol. 27(8), 1302–1317 (2010)CrossRef R.J. Barthelmie, S. Pryor, S.T. Frandsen, K.S. Hansen, J. Schepers, K. Rados, W. Schlez, A. Neubert, L. Jensen, S. Neckelmann, Quantifying the impact of wind turbine wakes on power output at offshore wind farms. J. Atmos. Ocean. Technol. 27(8), 1302–1317 (2010)CrossRef
5.
Zurück zum Zitat C. Archer, A. Vasel-Be-Hagh, C. Yan, S. Wu, Y. Pan, J. Brodie, A. Maguire, Review and evaluation of wake loss models for wind energy applications. Appl. Energy 226, 1187–1207 (2018)CrossRef C. Archer, A. Vasel-Be-Hagh, C. Yan, S. Wu, Y. Pan, J. Brodie, A. Maguire, Review and evaluation of wake loss models for wind energy applications. Appl. Energy 226, 1187–1207 (2018)CrossRef
6.
Zurück zum Zitat C.N. Elkinton, J.F. Manwell, J.G. McGowan, Algorithms for Offshore Wind Farm Layout Optimization. Wind Eng. 32(1), 67–83 (2008)CrossRef C.N. Elkinton, J.F. Manwell, J.G. McGowan, Algorithms for Offshore Wind Farm Layout Optimization. Wind Eng. 32(1), 67–83 (2008)CrossRef
7.
Zurück zum Zitat F. Azlan, J.C. Kurnia, B.T. Tan, M.Z. Ismadi, Review on optimisation methods of wind farm array under three classical wind condition problems. Renew. Sust. Energ. Rev. 135, 110047 (2021)CrossRef F. Azlan, J.C. Kurnia, B.T. Tan, M.Z. Ismadi, Review on optimisation methods of wind farm array under three classical wind condition problems. Renew. Sust. Energ. Rev. 135, 110047 (2021)CrossRef
8.
Zurück zum Zitat K. Balasubramanian, S.B. Thanikanti, U. Subramaniam, N. Sudhakar, S. Sichilalu, A novel review on optimization techniques used in wind farm modelling. Renew. Energy Focus 35, 84–96 (2020)CrossRef K. Balasubramanian, S.B. Thanikanti, U. Subramaniam, N. Sudhakar, S. Sichilalu, A novel review on optimization techniques used in wind farm modelling. Renew. Energy Focus 35, 84–96 (2020)CrossRef
9.
Zurück zum Zitat S. Tao, Q. Xu, A. Feijóo, G. Zheng, J. Zhou, Nonuniform wind farm layout optimization: a state-of-the-art review. Energy 209, 118339 (2020) S. Tao, Q. Xu, A. Feijóo, G. Zheng, J. Zhou, Nonuniform wind farm layout optimization: a state-of-the-art review. Energy 209, 118339 (2020)
10.
Zurück zum Zitat V.R. Ravipudi, H.S. Keesari, Optimization of wind farm layouts. Green Energy Technol. 141–157 (2022) V.R. Ravipudi, H.S. Keesari, Optimization of wind farm layouts. Green Energy Technol. 141–157 (2022)
11.
Zurück zum Zitat R. Asfour, T. Brahimi, M.F. El-Amin, Wind farm layout: modeling and optimization using genetic algorithm. IOP Conf. Seri. Earth Environ. Sci. 1008(1), 012004 (2022)CrossRef R. Asfour, T. Brahimi, M.F. El-Amin, Wind farm layout: modeling and optimization using genetic algorithm. IOP Conf. Seri. Earth Environ. Sci. 1008(1), 012004 (2022)CrossRef
12.
Zurück zum Zitat F. Bai, X. Ju, S. Wang, W. Zhou, F. Liu, Wind farm layout optimization using adaptive evolutionary algorithm with Monte Carlo tree search reinforcement learning. Energy Convers. Manag. 252, 115047 (2022)CrossRef F. Bai, X. Ju, S. Wang, W. Zhou, F. Liu, Wind farm layout optimization using adaptive evolutionary algorithm with Monte Carlo tree search reinforcement learning. Energy Convers. Manag. 252, 115047 (2022)CrossRef
13.
Zurück zum Zitat D. Cazzaro, D. Pisinger, Variable neighborhood search for large offshore wind farm layout optimization. Comput. Oper. Res. 138, 105588 (2022)MathSciNetCrossRefMATH D. Cazzaro, D. Pisinger, Variable neighborhood search for large offshore wind farm layout optimization. Comput. Oper. Res. 138, 105588 (2022)MathSciNetCrossRefMATH
14.
Zurück zum Zitat T.C. Vyshnav, M.C. Lavanya, K.C. Sindhu Thampatty, Reinforcement learning based wind farm layout optimization, in Proceedings of the International Conference on Electronics and Renewable Systems, ICEARS 2022, pp. 1393–1398 T.C. Vyshnav, M.C. Lavanya, K.C. Sindhu Thampatty, Reinforcement learning based wind farm layout optimization, in Proceedings of the International Conference on Electronics and Renewable Systems, ICEARS 2022, pp. 1393–1398
15.
Zurück zum Zitat B. Allen, L.F. Cameron, T.R.O. Wainwright, D.J. Poole, An initial study of multimodality in wind farm layout optimization problems, in AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022, art. no. AIAA 2022-1919 B. Allen, L.F. Cameron, T.R.O. Wainwright, D.J. Poole, An initial study of multimodality in wind farm layout optimization problems, in AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022, art. no. AIAA 2022-1919
16.
Zurück zum Zitat Y. Chen, H. Li, K. Jin, Q. Song, Wind farm layout optimization using genetic algorithm with different hub height wind turbines. Energy Convers. Manag. 70, 56–65 (2013)CrossRef Y. Chen, H. Li, K. Jin, Q. Song, Wind farm layout optimization using genetic algorithm with different hub height wind turbines. Energy Convers. Manag. 70, 56–65 (2013)CrossRef
17.
Zurück zum Zitat A. Vasel-Be-Hagh, C.L. Archer, Wind farm hub height optimization. Appl. Energy 195, 905–921 (2017)CrossRef A. Vasel-Be-Hagh, C.L. Archer, Wind farm hub height optimization. Appl. Energy 195, 905–921 (2017)CrossRef
18.
Zurück zum Zitat B. Xu, J. Zhu, J. Wen, S. Lin, Y. Zhao, J. Qi, Y. Xue, S. Qin, Optimization for variable height wind farm layout model. Intell. Autom. Soft Comput. 29(2), 525–537 (2021) B. Xu, J. Zhu, J. Wen, S. Lin, Y. Zhao, J. Qi, Y. Xue, S. Qin, Optimization for variable height wind farm layout model. Intell. Autom. Soft Comput. 29(2), 525–537 (2021)
19.
Zurück zum Zitat L.E.B. Cruz, B.S. Carmo, Wind farm layout optimization based on CFD simulations. J. Braz. Soc. Mech. Sci. 42(8), 433 (2020)CrossRef L.E.B. Cruz, B.S. Carmo, Wind farm layout optimization based on CFD simulations. J. Braz. Soc. Mech. Sci. 42(8), 433 (2020)CrossRef
20.
Zurück zum Zitat J. J. Thomas, J. Annoni, P. Fleming, A. Ning, Comparison of wind farm layout optimization results using a simple wake model and gradient-based optimization to large-eddy simulations, in AIAA Scitech 2019 Forum J. J. Thomas, J. Annoni, P. Fleming, A. Ning, Comparison of wind farm layout optimization results using a simple wake model and gradient-based optimization to large-eddy simulations, in AIAA Scitech 2019 Forum
21.
Zurück zum Zitat P. Yang, H. Najafi, The effect of using different wake models on wind farm layout optimization: a comparative study. J. Energy Resour. Technol., Trans. ASME 144(7), 70904 (2022) P. Yang, H. Najafi, The effect of using different wake models on wind farm layout optimization: a comparative study. J. Energy Resour. Technol., Trans. ASME 144(7), 70904 (2022)
22.
Zurück zum Zitat M. Barasa, X. Li, Y. Zhang, W. Xu, The balance effects of momentum deficit and thrust in cumulative wake models. Energy 246, 123399 (2022)CrossRef M. Barasa, X. Li, Y. Zhang, W. Xu, The balance effects of momentum deficit and thrust in cumulative wake models. Energy 246, 123399 (2022)CrossRef
23.
Zurück zum Zitat J.K. Kaldellis, P. Triantafyllou, P. Stinis, Critical evaluation of wind turbines’ analytical wake models. Renew. Sust. Energ. Rev. 144, 110991 (2021)CrossRef J.K. Kaldellis, P. Triantafyllou, P. Stinis, Critical evaluation of wind turbines’ analytical wake models. Renew. Sust. Energ. Rev. 144, 110991 (2021)CrossRef
24.
Zurück zum Zitat R. Nouri, A. Vasel-Be-Hagh, C.L. Archer, The coriolis force and the direction of rotation of the blades significantly affect the wake of wind turbines. Appl. Energy 277, 115511 (2020)CrossRef R. Nouri, A. Vasel-Be-Hagh, C.L. Archer, The coriolis force and the direction of rotation of the blades significantly affect the wake of wind turbines. Appl. Energy 277, 115511 (2020)CrossRef
25.
Zurück zum Zitat C.L. Archer, A. Vasel-Be-Hagh, Wake steering via yaw control in multi-turbine wind farms: recommendations based on large-eddy simulation. Sustain. Energy Technol. Assess. 33, 34–43 (2019) C.L. Archer, A. Vasel-Be-Hagh, Wake steering via yaw control in multi-turbine wind farms: recommendations based on large-eddy simulation. Sustain. Energy Technol. Assess. 33, 34–43 (2019)
26.
Zurück zum Zitat M. Howland, S. Lele, J. Dabiri, Wind farm power optimization through wake steering. Proc. Natl. Acad. Sci. U.S.A. 116(29), 14495–14500 (2019)CrossRef M. Howland, S. Lele, J. Dabiri, Wind farm power optimization through wake steering. Proc. Natl. Acad. Sci. U.S.A. 116(29), 14495–14500 (2019)CrossRef
27.
Zurück zum Zitat R. Nash, R. Nouri, A. Vasel-Be-Hagh, Wind turbine wake control strategies: a review and concept proposal. Energy Convers. Manag. 245 (2021) R. Nash, R. Nouri, A. Vasel-Be-Hagh, Wind turbine wake control strategies: a review and concept proposal. Energy Convers. Manag. 245 (2021)
28.
Zurück zum Zitat J. van Zalk, P. Behrens, The spatial extent of renewable and non-renewable power generation: a review and meta-analysis of power densities and their application in the U.S. Energy Policy 123, 83–91 (2018) J. van Zalk, P. Behrens, The spatial extent of renewable and non-renewable power generation: a review and meta-analysis of power densities and their application in the U.S. Energy Policy 123, 83–91 (2018)
29.
Zurück zum Zitat J. Sørensen, W. Shen, Numerical modeling of wind turbine wakes. J. Fluids Eng. 124, 393–399 (2002)CrossRef J. Sørensen, W. Shen, Numerical modeling of wind turbine wakes. J. Fluids Eng. 124, 393–399 (2002)CrossRef
30.
Zurück zum Zitat A. Vasel-Be-Hagh, C.L. Archer, Wind farms with counter-rotating wind turbines. Sustain. Energy Technol. Assess. 24, 19–30 (2017) A. Vasel-Be-Hagh, C.L. Archer, Wind farms with counter-rotating wind turbines. Sustain. Energy Technol. Assess. 24, 19–30 (2017)
33.
Zurück zum Zitat L.A. Martínez-Tossas, M.J. Churchfield, A.E, Yilmaz, H. Sarlak, P.L. Johnson, J.N. Sørensen, J. Meyers, C. Meneveau, Comparison of four large-eddy simulation research codes and effects of model coefficient and inflow turbulence in actuator-line-based wind turbine modeling. J. Renew. Sustain. Energy 10, 033301 (2018) L.A. Martínez-Tossas, M.J. Churchfield, A.E, Yilmaz, H. Sarlak, P.L. Johnson, J.N. Sørensen, J. Meyers, C. Meneveau, Comparison of four large-eddy simulation research codes and effects of model coefficient and inflow turbulence in actuator-line-based wind turbine modeling. J. Renew. Sustain. Energy 10, 033301 (2018)
Metadaten
Titel
Wind Turbine Wake Redirection via External Vanes
verfasst von
Reza Nouri
Ryan R. Nash
Ahmad Vasel-Be-Hagh
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-20506-4_3