Skip to main content
Erschienen in: Experiments in Fluids 2/2021

01.02.2021 | Research Article

Wire mesh fences for manipulation of turbulence energy spectrum

verfasst von: Azadeh Jafari, Matthew Emes, Benjamin Cazzolato, Farzin Ghanadi, Maziar Arjomandi

Erschienen in: Experiments in Fluids | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Manipulation of turbulence within an atmospheric boundary layer flow by application of woven wire mesh fences is investigated. Turbulence properties behind fences of different porosities and mesh opening widths were determined from velocity measurements in a wind tunnel. It is found that with the application of a fence with a porosity of 0.46, the streamwise turbulence intensity can be reduced from the inflow level of 12.5%–8.8% and the integral length scale can be reduced from 380 to 270 mm. The results show that behind the mesh fences turbulence kinetic energy decays as a power law function of the downstream distance for all wire mesh fences tested in the wind tunnel. The decay rate of turbulence kinetic energy is faster, and a larger reduction in the integral length scale is achieved for fences with porosities between 0.46 and 0.64 compared to higher porosities of between 0.73 and 0.75. Porosity of the woven wire meshes is found to be the key parameter which influences their turbulence reduction performance. In the end, application of the wire mesh fences for reduction of wind loads on solar panels and heliostats is discussed. Evaluation of wind loads based on the reduction of turbulence intensity and integral length scale shows that up to 48% and 53% reduction in peak drag and lift forces on a heliostat, respectively, can be achieved with application of mesh fences.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aubrun S, Loyer S, Hancock PE, Hayden P (2013) Wind turbine wake properties: comparison between a non-rotating simplified wind turbine model and a rotating model. J Wind Eng Ind Aerodyn 120:1–8CrossRef Aubrun S, Loyer S, Hancock PE, Hayden P (2013) Wind turbine wake properties: comparison between a non-rotating simplified wind turbine model and a rotating model. J Wind Eng Ind Aerodyn 120:1–8CrossRef
Zurück zum Zitat Basnet K, Constantinescu G (2017) The structure of turbulent flow around vertical plates containing holes and attached to a channel bed. Phys Fluids 29:115101CrossRef Basnet K, Constantinescu G (2017) The structure of turbulent flow around vertical plates containing holes and attached to a channel bed. Phys Fluids 29:115101CrossRef
Zurück zum Zitat Bogdan O, Cretu D (2019) Wind load design of photovoltaic power plants by comparison of design codes and wind tunnel tests. Math Model Civ Eng 15:13–27CrossRef Bogdan O, Cretu D (2019) Wind load design of photovoltaic power plants by comparison of design codes and wind tunnel tests. Math Model Civ Eng 15:13–27CrossRef
Zurück zum Zitat Bos WJ (2019) Grid turbulence near the grid. HAL Archives-ouvertes, hal-02063500 Bos WJ (2019) Grid turbulence near the grid. HAL Archives-ouvertes, hal-02063500
Zurück zum Zitat Camp EH, Cal RB (2016) Mean kinetic energy transport and event classification in a model wind turbine array versus an array of porous disks: energy budget and octant analysis. Phys Rev Fluids 1:044404CrossRef Camp EH, Cal RB (2016) Mean kinetic energy transport and event classification in a model wind turbine array versus an array of porous disks: energy budget and octant analysis. Phys Rev Fluids 1:044404CrossRef
Zurück zum Zitat Camp EH, Cal RB (2019) Low-dimensional representations and anisotropy of model rotor versus porous disk wind turbine arrays. Phys Rev Fluids 4:024610CrossRef Camp EH, Cal RB (2019) Low-dimensional representations and anisotropy of model rotor versus porous disk wind turbine arrays. Phys Rev Fluids 4:024610CrossRef
Zurück zum Zitat De Paepe W, Pindado S, Bram S, Contino F (2016) Simplified elements for wind-tunnel measurements with type-iii-terrain atmospheric boundary layer. Measurement 91:590–600CrossRef De Paepe W, Pindado S, Bram S, Contino F (2016) Simplified elements for wind-tunnel measurements with type-iii-terrain atmospheric boundary layer. Measurement 91:590–600CrossRef
Zurück zum Zitat Dong Z, Luo W, Qian G, Wang H (2007) A wind tunnel simulation of the mean velocity fields behind upright porous fences. Agric For Meteorol 146:82–93CrossRef Dong Z, Luo W, Qian G, Wang H (2007) A wind tunnel simulation of the mean velocity fields behind upright porous fences. Agric For Meteorol 146:82–93CrossRef
Zurück zum Zitat Dong Z, Luo W, Qian G, Lu P, Wang H (2010) A wind tunnel simulation of the turbulence fields behind upright porous wind fences. J Arid Environ 74:193–207CrossRef Dong Z, Luo W, Qian G, Lu P, Wang H (2010) A wind tunnel simulation of the turbulence fields behind upright porous wind fences. J Arid Environ 74:193–207CrossRef
Zurück zum Zitat Emes MJ, Arjomandi M, Nathan GJ (2015) Effect of heliostat design wind speed on the levelised cost of electricity from concentrating solar thermal power tower plants. Sol Energy 115:441–451CrossRef Emes MJ, Arjomandi M, Nathan GJ (2015) Effect of heliostat design wind speed on the levelised cost of electricity from concentrating solar thermal power tower plants. Sol Energy 115:441–451CrossRef
Zurück zum Zitat Emes MJ, Arjomandi M, Ghanadi F, Kelso RM (2017) Effect of turbulence characteristics in the atmospheric surface layer on the peak wind loads on heliostats in stow position. Sol Energy 157:284–297CrossRef Emes MJ, Arjomandi M, Ghanadi F, Kelso RM (2017) Effect of turbulence characteristics in the atmospheric surface layer on the peak wind loads on heliostats in stow position. Sol Energy 157:284–297CrossRef
Zurück zum Zitat Emes MJ, Jafari A, Ghanadi F, Arjomandi M (2019) Hinge and overturning moments due to unsteady heliostat pressure distributions in a turbulent atmospheric boundary layer. Sol Energy 193:604–617CrossRef Emes MJ, Jafari A, Ghanadi F, Arjomandi M (2019) Hinge and overturning moments due to unsteady heliostat pressure distributions in a turbulent atmospheric boundary layer. Sol Energy 193:604–617CrossRef
Zurück zum Zitat Emes MJ, Jafari A, Coventry J, Arjomandi M (2020) The influence of atmospheric boundary layer turbulence on the design wind loads and cost of heliostats. Sol Energy 207:796–812CrossRef Emes MJ, Jafari A, Coventry J, Arjomandi M (2020) The influence of atmospheric boundary layer turbulence on the design wind loads and cost of heliostats. Sol Energy 207:796–812CrossRef
Zurück zum Zitat ESDU85020 (2010) Characteristics of atmospheric turbulence near the ground—part ii: single point data for strong winds (neutral atmosphere). Engineering Sciences Data Unit ESDU85020 (2010) Characteristics of atmospheric turbulence near the ground—part ii: single point data for strong winds (neutral atmosphere). Engineering Sciences Data Unit
Zurück zum Zitat España G, Aubrun S, Loyer S, Devinant P (2012) Wind tunnel study of the wake meandering downstream of a modelled wind turbine as an effect of large scale turbulent eddies. J Wind Eng Ind Aerodyn 101:24–33CrossRef España G, Aubrun S, Loyer S, Devinant P (2012) Wind tunnel study of the wake meandering downstream of a modelled wind turbine as an effect of large scale turbulent eddies. J Wind Eng Ind Aerodyn 101:24–33CrossRef
Zurück zum Zitat García ET, Ogueta-Gutiérrez M, Ávila S, Franchini S, Herrera E, Meseguer J (2014) On the effects of windbreaks on the aerodynamic loads over parabolic solar troughs. Appl Energy 115:293–300CrossRef García ET, Ogueta-Gutiérrez M, Ávila S, Franchini S, Herrera E, Meseguer J (2014) On the effects of windbreaks on the aerodynamic loads over parabolic solar troughs. Appl Energy 115:293–300CrossRef
Zurück zum Zitat Glick A, Ali N, Bossuyt J, Recktenwald G, Calaf M, Cal RB (2020a) Infinite photovoltaic solar arrays: considering flux of momentum and heat transfer. Renew Energy 156:791–803CrossRef Glick A, Ali N, Bossuyt J, Recktenwald G, Calaf M, Cal RB (2020a) Infinite photovoltaic solar arrays: considering flux of momentum and heat transfer. Renew Energy 156:791–803CrossRef
Zurück zum Zitat Glick A, Smith SE, Ali N, Bossuyt J, Recktenwald G, Calaf M, Cal RB (2020b) Influence of flow direction and turbulence intensity on heat transfer of utility-scale photovoltaic solar farms. Sol Energy 207:173–182CrossRef Glick A, Smith SE, Ali N, Bossuyt J, Recktenwald G, Calaf M, Cal RB (2020b) Influence of flow direction and turbulence intensity on heat transfer of utility-scale photovoltaic solar farms. Sol Energy 207:173–182CrossRef
Zurück zum Zitat Gomes-Fernandes R, Ganapathisubramani B, Vassilicos JC (2012) Particle image velocimetry study of fractal-generated turbulence. J Fluid Mech 711:306–336MATHCrossRef Gomes-Fernandes R, Ganapathisubramani B, Vassilicos JC (2012) Particle image velocimetry study of fractal-generated turbulence. J Fluid Mech 711:306–336MATHCrossRef
Zurück zum Zitat Groth J, Johansson AV (1988) Turbulence reduction by screens. J Fluid Mech 197:139–155CrossRef Groth J, Johansson AV (1988) Turbulence reduction by screens. J Fluid Mech 197:139–155CrossRef
Zurück zum Zitat Hearst RJ, Lavoie P (2014) Decay of turbulence generated by a square-fractal-element grid. J Fluid Mech 741:567–584CrossRef Hearst RJ, Lavoie P (2014) Decay of turbulence generated by a square-fractal-element grid. J Fluid Mech 741:567–584CrossRef
Zurück zum Zitat Hurst D, Vassilicos JC (2007) Scalings and decay of fractal-generated turbulence. Phys Fluids 19:035103MATHCrossRef Hurst D, Vassilicos JC (2007) Scalings and decay of fractal-generated turbulence. Phys Fluids 19:035103MATHCrossRef
Zurück zum Zitat Irps T, Kanjirakkad V (2016) On the interaction between turbulence grids and boundary layers. EPJ Web Conf 114:02048CrossRef Irps T, Kanjirakkad V (2016) On the interaction between turbulence grids and boundary layers. EPJ Web Conf 114:02048CrossRef
Zurück zum Zitat Iyengar AKS, Farell C (2001) Experimental issues in atmospheric boundary layer simulations: roughness length and integral length scale determination. J Wind Eng Ind Aerodyn 89:1059–1080CrossRef Iyengar AKS, Farell C (2001) Experimental issues in atmospheric boundary layer simulations: roughness length and integral length scale determination. J Wind Eng Ind Aerodyn 89:1059–1080CrossRef
Zurück zum Zitat Jafari A, Ghanadi F, Emes MJ, Arjomandi M, Cazzolato BS (2018) Effect of free-stream turbulence on the drag force on a flat plate. In: 21st Australasian fluid mechanics conference. Adelaide, Australia Jafari A, Ghanadi F, Emes MJ, Arjomandi M, Cazzolato BS (2018) Effect of free-stream turbulence on the drag force on a flat plate. In: 21st Australasian fluid mechanics conference. Adelaide, Australia
Zurück zum Zitat Jafari A, Ghanadi F, Arjomandi M, Emes MJ, Cazzolato BS (2019) Correlating turbulence intensity and length scale with the unsteady lift force on flat plates in an atmospheric boundary layer flow. J Wind Eng Ind Aerodyn 189:218–230CrossRef Jafari A, Ghanadi F, Arjomandi M, Emes MJ, Cazzolato BS (2019) Correlating turbulence intensity and length scale with the unsteady lift force on flat plates in an atmospheric boundary layer flow. J Wind Eng Ind Aerodyn 189:218–230CrossRef
Zurück zum Zitat Keylock CJ, Nishimura K, Nemoto M, Ito Y (2012) The flow structure in the wake of a fractal fence and the absence of an “inertial regime.” Environ Fluid Mech 12:227–250CrossRef Keylock CJ, Nishimura K, Nemoto M, Ito Y (2012) The flow structure in the wake of a fractal fence and the absence of an “inertial regime.” Environ Fluid Mech 12:227–250CrossRef
Zurück zum Zitat Kim H-B, Lee S-J (2001) Hole diameter effect on flow characteristics of wake behind porous fences having the same porosity. Fluid Dyn Res 28:449–464CrossRef Kim H-B, Lee S-J (2001) Hole diameter effect on flow characteristics of wake behind porous fences having the same porosity. Fluid Dyn Res 28:449–464CrossRef
Zurück zum Zitat Kolb GJ, Ho CK, Mancini TR, Gary JA (2011) Power tower technology roadmap and cost reduction plan. SAND2011-2419, Sandia National Laboratories Kolb GJ, Ho CK, Mancini TR, Gary JA (2011) Power tower technology roadmap and cost reduction plan. SAND2011-2419, Sandia National Laboratories
Zurück zum Zitat Kozmar H (2011) Truncated vortex generators for part-depth wind-tunnel simulations of the atmospheric boundary layer flow. J Wind Eng Ind Aerodyn 99(2–3):130–136CrossRef Kozmar H (2011) Truncated vortex generators for part-depth wind-tunnel simulations of the atmospheric boundary layer flow. J Wind Eng Ind Aerodyn 99(2–3):130–136CrossRef
Zurück zum Zitat Kurian T, Fransson JHM (2009) Grid-generated turbulence revisited. Fluid Dyn Res 41:021403MATHCrossRef Kurian T, Fransson JHM (2009) Grid-generated turbulence revisited. Fluid Dyn Res 41:021403MATHCrossRef
Zurück zum Zitat Lavoie P, Burattini P, Djenidi L, Antonia RA (2005) Effect of initial conditions on decaying grid turbulence at low rλ. Exp Fluids 39:865–874CrossRef Lavoie P, Burattini P, Djenidi L, Antonia RA (2005) Effect of initial conditions on decaying grid turbulence at low rλ. Exp Fluids 39:865–874CrossRef
Zurück zum Zitat Lee S-J, Kim H-B (1999) Laboratory measurements of velocity and turbulence field behind porous fences. J Wind Eng Ind Aerodyn 80:311–326CrossRef Lee S-J, Kim H-B (1999) Laboratory measurements of velocity and turbulence field behind porous fences. J Wind Eng Ind Aerodyn 80:311–326CrossRef
Zurück zum Zitat Li B, Sherman DJ (2015) Aerodynamics and morphodynamics of sand fences: a review. Aeol Res 17:33–48CrossRef Li B, Sherman DJ (2015) Aerodynamics and morphodynamics of sand fences: a review. Aeol Res 17:33–48CrossRef
Zurück zum Zitat Loehrke RI, Nagib HM (1972) Experiments on management of free-stream turbulence. Technical report AGARD report no. 598 Loehrke RI, Nagib HM (1972) Experiments on management of free-stream turbulence. Technical report AGARD report no. 598
Zurück zum Zitat Mayer MJ, Gróf G (2020) Techno-economic optimization of grid-connected, ground-mounted photovoltaic power plants by genetic algorithm based on a comprehensive mathematical model. Sol Energy 202:210–226CrossRef Mayer MJ, Gróf G (2020) Techno-economic optimization of grid-connected, ground-mounted photovoltaic power plants by genetic algorithm based on a comprehensive mathematical model. Sol Energy 202:210–226CrossRef
Zurück zum Zitat Peterka JA, Derickson RG (1992) Wind load design methods for ground-based heliostats and parabolic dish collectors. Technical Report for Sandia Laboratories. Peterka JA, Derickson RG (1992) Wind load design methods for ground-based heliostats and parabolic dish collectors. Technical Report for Sandia Laboratories.
Zurück zum Zitat Peterka JA, Bienkiewicz B, Hosoya N, Cermak JE (1987a) Heliostat mean wind load reduction. Energy 12:261–267CrossRef Peterka JA, Bienkiewicz B, Hosoya N, Cermak JE (1987a) Heliostat mean wind load reduction. Energy 12:261–267CrossRef
Zurück zum Zitat Peterka JA, Tan L, Bienkiewcz B, Cermak JE (1987b) Mean and peak wind load reduction on heliostats. Technical Report for Colorado State University Peterka JA, Tan L, Bienkiewcz B, Cermak JE (1987b) Mean and peak wind load reduction on heliostats. Technical Report for Colorado State University
Zurück zum Zitat Peterka JA, Tan Z, Cermak JE, Bienkiewicz B (1989) Mean and peak wind loads on heliostats. J SolEnergy Eng 111:158–164 Peterka JA, Tan Z, Cermak JE, Bienkiewicz B (1989) Mean and peak wind loads on heliostats. J SolEnergy Eng 111:158–164
Zurück zum Zitat Pfahl A (2018) Wind loads on heliostats and photovoltaic trackers. Technische Universiteit Eindhoven Pfahl A (2018) Wind loads on heliostats and photovoltaic trackers. Technische Universiteit Eindhoven
Zurück zum Zitat Pfahl A, Coventry J, Röger M, Wolfertstetter F, Vásquez-Arango JF, Gross F, Arjomandi M, Schwarzbözl P, Geiger M, Liedke P (2017) Progress in heliostat development. Sol Energy 152:3–37CrossRef Pfahl A, Coventry J, Röger M, Wolfertstetter F, Vásquez-Arango JF, Gross F, Arjomandi M, Schwarzbözl P, Geiger M, Liedke P (2017) Progress in heliostat development. Sol Energy 152:3–37CrossRef
Zurück zum Zitat Pratt RN, Kopp GA (2013) Velocity measurements around low-profile, tilted, solar arrays mounted on large flat-roofs, for wall normal wind directions. J Wind Eng Ind Aerodyn 123:226–238CrossRef Pratt RN, Kopp GA (2013) Velocity measurements around low-profile, tilted, solar arrays mounted on large flat-roofs, for wall normal wind directions. J Wind Eng Ind Aerodyn 123:226–238CrossRef
Zurück zum Zitat Raine JK, Stevenson DC (1977) Wind protection by model fences in a simulated atmospheric boundary layer. J Wind Eng Ind Aerodyn 2:159–180CrossRef Raine JK, Stevenson DC (1977) Wind protection by model fences in a simulated atmospheric boundary layer. J Wind Eng Ind Aerodyn 2:159–180CrossRef
Zurück zum Zitat Richardson GM (1989) A permeable windbreak: Its effect on the structure of the natural wind. J Wind Eng Ind Aerodyn 32:101–110CrossRef Richardson GM (1989) A permeable windbreak: Its effect on the structure of the natural wind. J Wind Eng Ind Aerodyn 32:101–110CrossRef
Zurück zum Zitat Rodríguez-López E, Bruce PJK, Buxton ORH (2017) Flow characteristics and scaling past highly porous wall-mounted fences. Phys Fluids 29:075106CrossRef Rodríguez-López E, Bruce PJK, Buxton ORH (2017) Flow characteristics and scaling past highly porous wall-mounted fences. Phys Fluids 29:075106CrossRef
Zurück zum Zitat Seoud RE, Vassilicos JC (2007) Dissipation and decay of fractal-generated turbulence. Phys Fluids 19:105108MATHCrossRef Seoud RE, Vassilicos JC (2007) Dissipation and decay of fractal-generated turbulence. Phys Fluids 19:105108MATHCrossRef
Zurück zum Zitat Shiau B-S (1998) Measurement of turbulence characteristics for flow past porous windscreen. J Wind Eng Ind Aerodyn 74–76:521–530CrossRef Shiau B-S (1998) Measurement of turbulence characteristics for flow past porous windscreen. J Wind Eng Ind Aerodyn 74–76:521–530CrossRef
Zurück zum Zitat Sreenivasan KR (1984) On the scaling of the turbulence energy dissipation rate. Phys Fluids 27:1048–1051CrossRef Sreenivasan KR (1984) On the scaling of the turbulence energy dissipation rate. Phys Fluids 27:1048–1051CrossRef
Zurück zum Zitat Sun H, Gong B, Yao Q (2014) A review of wind loads on heliostats and trough collectors. Renew Sustain Energy Rev 32:206–221CrossRef Sun H, Gong B, Yao Q (2014) A review of wind loads on heliostats and trough collectors. Renew Sustain Energy Rev 32:206–221CrossRef
Zurück zum Zitat Tadie M, Hemmati A, Lange C, Fleck B (2019) Performance of turbulence models in simulating wind loads on photovoltaics modules. Energies 12:3290CrossRef Tadie M, Hemmati A, Lange C, Fleck B (2019) Performance of turbulence models in simulating wind loads on photovoltaics modules. Energies 12:3290CrossRef
Zurück zum Zitat Tan-Atichat J, Nagib HM, Loehrke RI (1982) Interaction of free-stream turbulence with screens and grids: a balance between turbulence scales. J Fluid Mech 114:501–528CrossRef Tan-Atichat J, Nagib HM, Loehrke RI (1982) Interaction of free-stream turbulence with screens and grids: a balance between turbulence scales. J Fluid Mech 114:501–528CrossRef
Zurück zum Zitat Thormann A, Meneveau C (2014) Decay of homogeneous, nearly isotropic turbulence behind active fractal grids. Phys Fluids 26:025112CrossRef Thormann A, Meneveau C (2014) Decay of homogeneous, nearly isotropic turbulence behind active fractal grids. Phys Fluids 26:025112CrossRef
Zurück zum Zitat Tobin N, Chamorro LP (2017) Windbreak effects within infinite wind farms. Energies 10:1140CrossRef Tobin N, Chamorro LP (2017) Windbreak effects within infinite wind farms. Energies 10:1140CrossRef
Zurück zum Zitat Tobin N, Hamed AM, Chamorro LP (2017) Fractional flow speed-up from porous windbreaks for enhanced wind-turbine power. Bound Layer Meteorol 163:253–271CrossRef Tobin N, Hamed AM, Chamorro LP (2017) Fractional flow speed-up from porous windbreaks for enhanced wind-turbine power. Bound Layer Meteorol 163:253–271CrossRef
Zurück zum Zitat Tsukahara T, Sakamoto Y, Aoshima D, Yamamoto M, Kawaguchi Y (2012) Visualization and laser measurements on the flow field and sand movement on sand dunes with porous fences. Exp Fluids 52:877–890CrossRef Tsukahara T, Sakamoto Y, Aoshima D, Yamamoto M, Kawaguchi Y (2012) Visualization and laser measurements on the flow field and sand movement on sand dunes with porous fences. Exp Fluids 52:877–890CrossRef
Zurück zum Zitat Valente PC, Vassilicos JC (2015) The energy cascade in grid-generated non-equilibrium decaying turbulence. Phys Fluids 27:045103CrossRef Valente PC, Vassilicos JC (2015) The energy cascade in grid-generated non-equilibrium decaying turbulence. Phys Fluids 27:045103CrossRef
Zurück zum Zitat Watanabe T, Nagata K (2018) Integral invariants and decay of temporally developing grid turbulence. Phys Fluids 30:105111CrossRef Watanabe T, Nagata K (2018) Integral invariants and decay of temporally developing grid turbulence. Phys Fluids 30:105111CrossRef
Metadaten
Titel
Wire mesh fences for manipulation of turbulence energy spectrum
verfasst von
Azadeh Jafari
Matthew Emes
Benjamin Cazzolato
Farzin Ghanadi
Maziar Arjomandi
Publikationsdatum
01.02.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 2/2021
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-021-03133-7

Weitere Artikel der Ausgabe 2/2021

Experiments in Fluids 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.