Skip to main content

2015 | OriginalPaper | Buchkapitel

2. Wireless Power Transfer (WPT) for Electric Vehicles (EVs)—Present and Future Trends

verfasst von : D. M. Vilathgamuwa, J. P. K. Sampath

Erschienen in: Plug In Electric Vehicles in Smart Grids

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

100 year old gasoline engine technology vehicles have now become one of the major contributors of greenhouse gases. Plug-in Electric Vehicles (PEVs) have been proposed to achieve environmental friendly transportation. Even though the PEV usage is currently increasing, a technology breakthrough would be required to overcome battery related drawbacks. Although battery technology is evolving, drawbacks inherited with batteries such as; cost, size, weight, slower charging characteristic and low energy density would still be dominating constrains for development of EVs. Furthermore, PEVs have not been accepted as preferred choice by many consumers due to charging related issues. To address battery related limitations, the concept of dynamic Wireless Power Transfer (WPT) enabled EVs have been proposed in which EV is being charged while it is in motion. WPT enabled infrastructure has to be employed to achieve dynamic EV charging concept. The weight of the battery pack can be reduced as the required energy storage is lower if the vehicle can be powered wirelessly while driving. Stationary WPT charging where EV is charged wirelessly when it is stopped, is simpler than dynamic WPT in terms of design complexity. However, stationary WPT does not increase vehicle range compared to wired-PEVs. State-of-art WPT technology for future transportation is discussed in this chapter. Analysis of the WPT system and its performance indices are introduced. Modelling the WPT system using different methods such as equivalent circuit theory, two port network theory and coupled mode theory is described illustrating their own merits in Sect. 2.3. Both stationary and dynamic WPT for EV applications are illustrated in Sect. 2.4. Design challenges and optimization directions are analysed in Sect. 2.5. Adaptive tuning techniques such as adaptive impedance matching and frequency tuning are also discussed. A case study for optimizing resonator design is presented in Sect. 2.6. Achievements by the research community is introduced highlighting directions for future research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRef Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRef
2.
Zurück zum Zitat Madawala UK, Schweizer P, Haerri VV (2008) Living and mobility—a novel multipurpose in-house grid interface with plug in hybrid blue angle. Paper presented at the IEEE international conference on sustainable energy technologies, 2008 Madawala UK, Schweizer P, Haerri VV (2008) Living and mobility—a novel multipurpose in-house grid interface with plug in hybrid blue angle. Paper presented at the IEEE international conference on sustainable energy technologies, 2008
3.
Zurück zum Zitat Madawala UK, Thrimawithana DJ (2011) A bidirectional inductive power interface for electric vehicles in V2G systems. IEEE Trans Ind Electron 58:789–4796CrossRef Madawala UK, Thrimawithana DJ (2011) A bidirectional inductive power interface for electric vehicles in V2G systems. IEEE Trans Ind Electron 58:789–4796CrossRef
4.
Zurück zum Zitat Hori Y (2013) Looking at cars 100 years in the future. Paper presented at the IEEE international conference on mechatronics (ICM), 2013 Hori Y (2013) Looking at cars 100 years in the future. Paper presented at the IEEE international conference on mechatronics (ICM), 2013
5.
Zurück zum Zitat Tesla N (1914) Apparatus for transmitting electrical energy. US patent 1,119,732, December 1914 Tesla N (1914) Apparatus for transmitting electrical energy. US patent 1,119,732, December 1914
6.
Zurück zum Zitat Kurs A, Karalis A, Moffatt R, Joannopoulos JD, Fisher P, Soljačić M (2007) Wireless power transfer via strongly coupled magnetic resonances. Science 317:83–86CrossRefMathSciNet Kurs A, Karalis A, Moffatt R, Joannopoulos JD, Fisher P, Soljačić M (2007) Wireless power transfer via strongly coupled magnetic resonances. Science 317:83–86CrossRefMathSciNet
7.
Zurück zum Zitat Eghtesadi M (1990) Inductive power transfer to an electric vehicle-analytical model. Paper presented at the 40th IEEE vehicular technology conference, 1990 Eghtesadi M (1990) Inductive power transfer to an electric vehicle-analytical model. Paper presented at the 40th IEEE vehicular technology conference, 1990
8.
Zurück zum Zitat Madawala UK, Stichbury J, Walker S (2004) Contactless power transfer with two-way communication. Paper presented at the 30th annual conference of IEEE Industrial Electronics Society, 2004 Madawala UK, Stichbury J, Walker S (2004) Contactless power transfer with two-way communication. Paper presented at the 30th annual conference of IEEE Industrial Electronics Society, 2004
9.
Zurück zum Zitat Chi KL, Zhong WX, Hui SYR (2012) Effects of magnetic coupling of nonadjacent resonators on wireless power domino-resonator systems. IEEE Trans Power Electron 27:1905–1916CrossRef Chi KL, Zhong WX, Hui SYR (2012) Effects of magnetic coupling of nonadjacent resonators on wireless power domino-resonator systems. IEEE Trans Power Electron 27:1905–1916CrossRef
10.
Zurück zum Zitat Chih-Jung C, Tah-Hsiung C, Chih-Lung L, Zeui-Chown J (2010) A study of loosely coupled coils for wireless power transfer. IEEE Trans Circuits Syst II : Eexpress Briefs 57:536–540CrossRef Chih-Jung C, Tah-Hsiung C, Chih-Lung L, Zeui-Chown J (2010) A study of loosely coupled coils for wireless power transfer. IEEE Trans Circuits Syst II : Eexpress Briefs 57:536–540CrossRef
11.
Zurück zum Zitat Chang-Yu H, Boys JT, Covic GA, Budhia M (2009) Practical considerations for designing IPT system for EV battery charging. Paper presented at the IEEE vehicle power and propulsion conference, 2009 Chang-Yu H, Boys JT, Covic GA, Budhia M (2009) Practical considerations for designing IPT system for EV battery charging. Paper presented at the IEEE vehicle power and propulsion conference, 2009
12.
Zurück zum Zitat Haus H, Huang WP (1991) Coupled-mode theory. Proc IEEE 79:1505–1518CrossRef Haus H, Huang WP (1991) Coupled-mode theory. Proc IEEE 79:1505–1518CrossRef
13.
Zurück zum Zitat Karalis A, Joannopoulos JD, Soljačić M (2008) Efficient wireless non-radiative mid-range energy transfer. Ann Phys 323:34–48CrossRef Karalis A, Joannopoulos JD, Soljačić M (2008) Efficient wireless non-radiative mid-range energy transfer. Ann Phys 323:34–48CrossRef
14.
Zurück zum Zitat Seung-Hwan L, Lorenz RD (2011) A design methodology for multi-kW, large air-gap, MHz frequency, wireless power transfer systems. Paper presented at the IEEE energy conversion congress and exposition (ECCE), 2011 Seung-Hwan L, Lorenz RD (2011) A design methodology for multi-kW, large air-gap, MHz frequency, wireless power transfer systems. Paper presented at the IEEE energy conversion congress and exposition (ECCE), 2011
15.
Zurück zum Zitat Thrimawithana DJ, Madawala UK (2010) A novel matrix converter based bi-directional IPT power interface for V2G applications. Paper presented at the IEEE international energy conference and exhibition (EnergyCon), 2010 Thrimawithana DJ, Madawala UK (2010) A novel matrix converter based bi-directional IPT power interface for V2G applications. Paper presented at the IEEE international energy conference and exhibition (EnergyCon), 2010
16.
Zurück zum Zitat Nguyen Xuan B, Vilathgamuwa DM, Madawala UK (2014) A sic-based matrix converter topology for inductive power transfer system. IEEE Trans Power Electron 29:4029–4038CrossRef Nguyen Xuan B, Vilathgamuwa DM, Madawala UK (2014) A sic-based matrix converter topology for inductive power transfer system. IEEE Trans Power Electron 29:4029–4038CrossRef
18.
Zurück zum Zitat Budhia M, Boys JT, Covic GA, Chang-Yu H (2013) Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems. IEEE Trans Ind Electron 60:318–328CrossRef Budhia M, Boys JT, Covic GA, Chang-Yu H (2013) Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems. IEEE Trans Ind Electron 60:318–328CrossRef
19.
Zurück zum Zitat Jiseong K, Jonghoon K, Sunkyu K, Hongseok K, In-Soo S, Nam Pyo S et al (2013) Coil design and shielding methods for a magnetic resonant wireless power transfer system. Proc IEEE 101:1332–1342CrossRef Jiseong K, Jonghoon K, Sunkyu K, Hongseok K, In-Soo S, Nam Pyo S et al (2013) Coil design and shielding methods for a magnetic resonant wireless power transfer system. Proc IEEE 101:1332–1342CrossRef
20.
Zurück zum Zitat Onar OC, Miller JM, Campbell SL, Coomer C, White CP Seiber LE (2013) A novel wireless power transfer for in-motion EV/PHEV charging. Paper presented at the twenty-eighth annual IEEE applied power electronics conference and exposition (APEC), 2013 Onar OC, Miller JM, Campbell SL, Coomer C, White CP Seiber LE (2013) A novel wireless power transfer for in-motion EV/PHEV charging. Paper presented at the twenty-eighth annual IEEE applied power electronics conference and exposition (APEC), 2013
21.
Zurück zum Zitat Sample AP, Meyer DA, Smith JR (2011) Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans Ind Electron 58:544–554CrossRef Sample AP, Meyer DA, Smith JR (2011) Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans Ind Electron 58:544–554CrossRef
22.
Zurück zum Zitat Kim NY, Kim KY, Choi J, Kim CW (2012) Adaptive frequency with power-level tracking system for efficient magnetic resonance wireless power transfer. Electron Lett 48:452–454CrossRef Kim NY, Kim KY, Choi J, Kim CW (2012) Adaptive frequency with power-level tracking system for efficient magnetic resonance wireless power transfer. Electron Lett 48:452–454CrossRef
23.
Zurück zum Zitat Beh T, Kato M, Imura T, Oh S, Hori Y (2013) Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling. IEEE Trans Ind Electron 60:3689–3698CrossRef Beh T, Kato M, Imura T, Oh S, Hori Y (2013) Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling. IEEE Trans Ind Electron 60:3689–3698CrossRef
24.
Zurück zum Zitat Kusaka K, Itoh JI (2012) Proposal of switched-mode matching circuit in power supply for wireless power transfer using magnetic resonance coupling. Paper presented at the twenty-seventh annual IEEE applied power electronics conference and exposition (APEC), 2012 Kusaka K, Itoh JI (2012) Proposal of switched-mode matching circuit in power supply for wireless power transfer using magnetic resonance coupling. Paper presented at the twenty-seventh annual IEEE applied power electronics conference and exposition (APEC), 2012
25.
Zurück zum Zitat Waters BH, Sample AP, Smith JR (2012) Adaptive impedance matching for magnetically coupled resonators. PIERS Proc 694–701 Waters BH, Sample AP, Smith JR (2012) Adaptive impedance matching for magnetically coupled resonators. PIERS Proc 694–701
26.
Zurück zum Zitat Thuc Phi D, Jong-Wook L (2011) Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method. IEEE Microwave Wirel Compon Lett 21:442–444CrossRef Thuc Phi D, Jong-Wook L (2011) Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method. IEEE Microwave Wirel Compon Lett 21:442–444CrossRef
27.
Zurück zum Zitat Xue RF, Cheng KW, Je M (2013) High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation. IEEE Trans Circuits Syst I Reg Papers 60:867–874CrossRef Xue RF, Cheng KW, Je M (2013) High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation. IEEE Trans Circuits Syst I Reg Papers 60:867–874CrossRef
28.
Zurück zum Zitat Seung-Hwan L, Lorenz RD (2011) Development and validation of model for 95 %-efficiency 220 W wireless power transfer over a 30 cm air gap. IEEE Trans Ind Appl 47:2495–2504CrossRef Seung-Hwan L, Lorenz RD (2011) Development and validation of model for 95 %-efficiency 220 W wireless power transfer over a 30 cm air gap. IEEE Trans Ind Appl 47:2495–2504CrossRef
29.
Zurück zum Zitat Babic SI, Akyel C (2008) Calculating mutual inductance between circular coils with inclined axes in air. IEEE Trans Mag 44:1743–1750CrossRef Babic SI, Akyel C (2008) Calculating mutual inductance between circular coils with inclined axes in air. IEEE Trans Mag 44:1743–1750CrossRef
30.
Zurück zum Zitat Akyel C, Babic SI, Mahmoudi M-M (2009) Mutual inductance calculation for noncoaxial circular air coils with parallel axes. Prog Electromagnet Res 91:287–301CrossRef Akyel C, Babic SI, Mahmoudi M-M (2009) Mutual inductance calculation for noncoaxial circular air coils with parallel axes. Prog Electromagnet Res 91:287–301CrossRef
31.
Zurück zum Zitat Grover FW (1964) Inductance calculations. Dover, New York Grover FW (1964) Inductance calculations. Dover, New York
32.
Zurück zum Zitat Byeong-Mun S, Kratz R, Gurol S (2002) Contactless inductive power pickup system for Maglev application. Paper presented at the 37th IAS industry applications conference, 2002 Byeong-Mun S, Kratz R, Gurol S (2002) Contactless inductive power pickup system for Maglev application. Paper presented at the 37th IAS industry applications conference, 2002
33.
Zurück zum Zitat Mecke R, Rathge C (2004) High frequency resonant inverter for contactless energy transmission over large air gap. Paper presented at the IEEE 35th annual power electronics specialists conference, 2004 Mecke R, Rathge C (2004) High frequency resonant inverter for contactless energy transmission over large air gap. Paper presented at the IEEE 35th annual power electronics specialists conference, 2004
34.
Zurück zum Zitat Nayanasiri DR, Vilathgamuwa DM, Maskell DL (2013) Current-controlled resonant circuit based photovoltaic micro-inverter with half-wave cyclo converter. Paper presented at the IEEE industry applications society annual meeting, 2013 Nayanasiri DR, Vilathgamuwa DM, Maskell DL (2013) Current-controlled resonant circuit based photovoltaic micro-inverter with half-wave cyclo converter. Paper presented at the IEEE industry applications society annual meeting, 2013
35.
Zurück zum Zitat Budhia M, Covic G, Boys J (2010) A new IPT magnetic coupler for electric vehicle charging systems. Paper presented at the IEEE 36th annual conference of industrial electronics society, 2010 Budhia M, Covic G, Boys J (2010) A new IPT magnetic coupler for electric vehicle charging systems. Paper presented at the IEEE 36th annual conference of industrial electronics society, 2010
36.
Zurück zum Zitat Budhia M, Covic GA, Boys JT (2011) Design and optimization of circular magnetic structures for lumped inductive power transfer systems. IEEE Trans Power Electron 26:3096–3108CrossRef Budhia M, Covic GA, Boys JT (2011) Design and optimization of circular magnetic structures for lumped inductive power transfer systems. IEEE Trans Power Electron 26:3096–3108CrossRef
37.
Zurück zum Zitat Jaegue S, Seungyong S, Yangsu K, Seungyoung A, Seokhwan L, Guho J et al (2014) Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles. IEEE Trans Ind Electron 61:1179–1192CrossRef Jaegue S, Seungyong S, Yangsu K, Seungyoung A, Seokhwan L, Guho J et al (2014) Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles. IEEE Trans Ind Electron 61:1179–1192CrossRef
38.
Zurück zum Zitat Sungwoo L, Jin H, Changbyung P, Nam-Sup C, Gyu-Hyeoung C, Chun-Taek R (2010) On-line electric vehicle using inductive power transfer system. Paper presented at the 2010 IEEE energy conversion congress and exposition (ECCE), 2010 Sungwoo L, Jin H, Changbyung P, Nam-Sup C, Gyu-Hyeoung C, Chun-Taek R (2010) On-line electric vehicle using inductive power transfer system. Paper presented at the 2010 IEEE energy conversion congress and exposition (ECCE), 2010
39.
Zurück zum Zitat Kainan C, Zhengming Z (2013) Analysis of the double-layer printed spiral coil for wireless power transfer. IEEE J Sel Top Power Electron 1:114–121CrossRef Kainan C, Zhengming Z (2013) Analysis of the double-layer printed spiral coil for wireless power transfer. IEEE J Sel Top Power Electron 1:114–121CrossRef
40.
Zurück zum Zitat Lee S-H, Lorenz RD (2013) Surface spiral coil design methodologies for high efficiency, high power, low flux density, large air-gap wireless power transfer systems. Paper presented in the 28th Annual IEEE applied power electronics conference and exposition (APEC), 2013 Lee S-H, Lorenz RD (2013) Surface spiral coil design methodologies for high efficiency, high power, low flux density, large air-gap wireless power transfer systems. Paper presented in the 28th Annual IEEE applied power electronics conference and exposition (APEC), 2013
41.
Zurück zum Zitat Wang-Sang L, Wang-Ik S, Kyoung-Sub O, Jong-Won Y (2013) Contactless energy transfer systems using antiparallel resonant loops. IEEE Trans Ind Electron 60:350–359CrossRef Wang-Sang L, Wang-Ik S, Kyoung-Sub O, Jong-Won Y (2013) Contactless energy transfer systems using antiparallel resonant loops. IEEE Trans Ind Electron 60:350–359CrossRef
42.
Zurück zum Zitat Ram RAK, Mirabbasi S, Mu C (2011) Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans Biomed Circuits Syst 5:48–63CrossRef Ram RAK, Mirabbasi S, Mu C (2011) Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans Biomed Circuits Syst 5:48–63CrossRef
43.
Zurück zum Zitat Yang Z, Wentai L, Basham E (2007) Inductor modeling in wireless links for implantable electronics. IEEE Trans Mag 43:3851–3860CrossRef Yang Z, Wentai L, Basham E (2007) Inductor modeling in wireless links for implantable electronics. IEEE Trans Mag 43:3851–3860CrossRef
Metadaten
Titel
Wireless Power Transfer (WPT) for Electric Vehicles (EVs)—Present and Future Trends
verfasst von
D. M. Vilathgamuwa
J. P. K. Sampath
Copyright-Jahr
2015
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-299-9_2

    Premium Partner