Skip to main content

2022 | OriginalPaper | Buchkapitel

2. Wireless Signals and Signal Processing

verfasst von : Jiannong Cao, Yanni Yang

Erschienen in: Wireless Sensing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter outlines the wireless signals and signal processing methods used for wireless sensing. We first introduces the preliminary knowledge about how wireless signals are generated and received for sensing. Then, we show different kinds of wireless signals and their characteristics in sensing. Finally, we demonstrate the signal processing methods to deal with the noises and constraints in wireless signals and devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
σ = 1∕(2πB−10dB(log10e)2).
 
2
The single tone signal can be expressed as cos(2πft + ϕ).
 
3
In Sect. 4.​2.​1.​1, we will explain why the signal amplitude does not perform robustly in distance estimation.
 
4
AOA estimation will be discussed in detail in Sect. 4.​2.​1.​2.
 
5
We will discuss in detail about device-free sensing in Sect. 3.​2.
 
6
LNA is widely used in RF receivers. It amplifies a very low-power signal without degrading the signal-to-noise ratio.
 
7
For RF systems, the number of transmitting and receiving antennas is a key consideration. Existing wireless communication systems are equipped with multiple Tx and Rx antennas to improve the throughput.
 
8
We will introduce details for AOA estimation in Sect. 4.​2.​1.​2.
 
9
We use the IQ plane to model the effect of static and dynamic signals. Please refer to Sect. 4.​2 for more details about signal modeling in the IQ plane.
 
10
The spreading factors are SF7, SF8, SF9, SF10, SF11, and SF12.
 
11
When performing FFT on a signal, the frequency resolution in the FFT result is decided by the time span of the signal. Similarly, for IFFT, the temporal resolution is determined by the bandwidth.
 
12
The 18–22 KHz frequency range is the commonly used frequency band in acoustic sensing using commodity speakers and microphones because the sound in this range is inaudible to people and cause less disturbance.
 
13
Coherence time is the time duration during which the channel impulse response does not change.
 
Literatur
1.
Zurück zum Zitat Molisch AF (2012) Wireless communications, vol 34. John Wiley & Sons Molisch AF (2012) Wireless communications, vol 34. John Wiley & Sons
2.
Zurück zum Zitat Wang W et al (2016) Device-free gesture tracking using acoustic signals. In: Proceedings of the 22nd annual international conference on mobile computing and networking, pp 82–94 Wang W et al (2016) Device-free gesture tracking using acoustic signals. In: Proceedings of the 22nd annual international conference on mobile computing and networking, pp 82–94
3.
Zurück zum Zitat Wang Y et al (2020) Push the limit of acoustic gesture recognition. IEEE Trans Mob Comput 21(5):1798–1811CrossRef Wang Y et al (2020) Push the limit of acoustic gesture recognition. IEEE Trans Mob Comput 21(5):1798–1811CrossRef
4.
Zurück zum Zitat Zheng T et al (2020) V2iFi: in-vehicle vital sign monitoring via compact rf sensing. Proc ACM Interactive Mob Wearable Ubiquitous Technol 4(2):1–27CrossRef Zheng T et al (2020) V2iFi: in-vehicle vital sign monitoring via compact rf sensing. Proc ACM Interactive Mob Wearable Ubiquitous Technol 4(2):1–27CrossRef
5.
Zurück zum Zitat Cheng H, Lou W (2021) Push the limit of device-free acoustic sensing on commercial mobile devices. In: Proceedings of IEEE conference on computer communications, pp 1–10 Cheng H, Lou W (2021) Push the limit of device-free acoustic sensing on commercial mobile devices. In: Proceedings of IEEE conference on computer communications, pp 1–10
6.
Zurück zum Zitat Zepernick HJ, Adolf F (2013) Pseudo random signal processing: theory and application. John Wiley & Sons Zepernick HJ, Adolf F (2013) Pseudo random signal processing: theory and application. John Wiley & Sons
7.
Zurück zum Zitat Haim A (2010) Basics of biomedical ultrasound for engineers. John Wiley & Sons Haim A (2010) Basics of biomedical ultrasound for engineers. John Wiley & Sons
8.
Zurück zum Zitat Cai C et al (2020) AcuTe: acoustic thermometer empowered by a single smartphone. In: Proceedings of the 18th conference on embedded networked sensor systems, pp 28–41 Cai C et al (2020) AcuTe: acoustic thermometer empowered by a single smartphone. In: Proceedings of the 18th conference on embedded networked sensor systems, pp 28–41
9.
Zurück zum Zitat Finkenzeller K (2010) RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication. John Wiley & SonsCrossRef Finkenzeller K (2010) RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication. John Wiley & SonsCrossRef
10.
Zurück zum Zitat Wang H et al (2016) Human respiration detection with commodity wifi devices: do user location and body orientation matter? In: Proceedings of the ACM international joint conference on pervasive and ubiquitous computing, pp 25–36 Wang H et al (2016) Human respiration detection with commodity wifi devices: do user location and body orientation matter? In: Proceedings of the ACM international joint conference on pervasive and ubiquitous computing, pp 25–36
11.
Zurück zum Zitat Zhang F et al (2018) From fresnel diffraction model to fine-grained human respiration sensing with commodity wi-fi devices. Proc ACM Interactive Mob Wearable Ubiquitous Technol 2(1):1–23 Zhang F et al (2018) From fresnel diffraction model to fine-grained human respiration sensing with commodity wi-fi devices. Proc ACM Interactive Mob Wearable Ubiquitous Technol 2(1):1–23
12.
Zurück zum Zitat Yang Z et al (2013) From RSSI to CSI: Indoor localization via channel response. ACM Comput Surv 46(2):1–32CrossRef Yang Z et al (2013) From RSSI to CSI: Indoor localization via channel response. ACM Comput Surv 46(2):1–32CrossRef
13.
Zurück zum Zitat Zhang F et al (2020) Exploring lora for long-range through-wall sensing. Proc ACM Interactive Mob Wearable Ubiquitous Technol 4(2):1–27 Zhang F et al (2020) Exploring lora for long-range through-wall sensing. Proc ACM Interactive Mob Wearable Ubiquitous Technol 4(2):1–27
14.
Zurück zum Zitat Zhang F et al (2021) Unlocking the beamforming potential of LoRa for long-range multi-target respiration sensing. Proc ACM Interactive Mob Wearable Ubiquitous Technol 5(2):1–25 Zhang F et al (2021) Unlocking the beamforming potential of LoRa for long-range multi-target respiration sensing. Proc ACM Interactive Mob Wearable Ubiquitous Technol 5(2):1–25
15.
Zurück zum Zitat Xie B et al (2021) Pushing the limits of long range wireless sensing with LoRa. Proc ACM Interactive Mob Wearable Ubiquitous Technol 5(3):1–21CrossRef Xie B et al (2021) Pushing the limits of long range wireless sensing with LoRa. Proc ACM Interactive Mob Wearable Ubiquitous Technol 5(3):1–21CrossRef
16.
Zurück zum Zitat Wang S et al (2020) Demystifying millimeter-wave V2X: Towards robust and efficient directional connectivity under high mobility. In: Proceedings of the 26th annual international conference on mobile computing and networking Wang S et al (2020) Demystifying millimeter-wave V2X: Towards robust and efficient directional connectivity under high mobility. In: Proceedings of the 26th annual international conference on mobile computing and networking
17.
Zurück zum Zitat Ha U et al (2020) Contactless seismocardiography via deep learning radars. In: Proceedings of the 26th annual international conference on mobile computing and networking, pp 1–14 Ha U et al (2020) Contactless seismocardiography via deep learning radars. In: Proceedings of the 26th annual international conference on mobile computing and networking, pp 1–14
18.
Zurück zum Zitat Li T et al (2015) Human sensing using visible light communication. Proceedings of the 21st annual international conference on mobile computing and networking, pp 331–344 Li T et al (2015) Human sensing using visible light communication. Proceedings of the 21st annual international conference on mobile computing and networking, pp 331–344
19.
Zurück zum Zitat Ma D et al (2019) Solargest: Ubiquitous and battery-free gesture recognition using solar cells. In: The 25th annual international conference on mobile computing and networking, pp 1–15 Ma D et al (2019) Solargest: Ubiquitous and battery-free gesture recognition using solar cells. In: The 25th annual international conference on mobile computing and networking, pp 1–15
20.
Zurück zum Zitat Zhou Y et al (2017) Perceiving accurate CSI phases with commodity WiFi devices. In: IEEE conference on computer communications, pp 1–9 Zhou Y et al (2017) Perceiving accurate CSI phases with commodity WiFi devices. In: IEEE conference on computer communications, pp 1–9
21.
Zurück zum Zitat Zhuo Y et al (2017) Perceiving accurate CSI phases with commodity WiFi devices. In: IEEE conference on computer communications, pp 1–9 Zhuo Y et al (2017) Perceiving accurate CSI phases with commodity WiFi devices. In: IEEE conference on computer communications, pp 1–9
22.
Zurück zum Zitat Yang Y et al (2018) Wi-count: Passing people counting with COTS WiFi devices. In: 27th International conference on computer communication and networks, pp 1–9 Yang Y et al (2018) Wi-count: Passing people counting with COTS WiFi devices. In: 27th International conference on computer communication and networks, pp 1–9
23.
Zurück zum Zitat Wang X et al (2017) PhaseBeat: Exploiting CSI phase data for vital sign monitoring with commodity WiFi devices. In: IEEE 37th international conference on distributed computing systems, pp 1230–1239 Wang X et al (2017) PhaseBeat: Exploiting CSI phase data for vital sign monitoring with commodity WiFi devices. In: IEEE 37th international conference on distributed computing systems, pp 1230–1239
24.
Zurück zum Zitat Wang G et al (2021) Dynamic phase calibration method for CSI-based indoor positioning. In: IEEE 11th annual computing and communication workshop and conference, pp 0108–0113 Wang G et al (2021) Dynamic phase calibration method for CSI-based indoor positioning. In: IEEE 11th annual computing and communication workshop and conference, pp 0108–0113
25.
Zurück zum Zitat Foley JT et al (2017) Low-cost antenna positioning system designed with axiomatic design. In MATEC web of conferences, vol 127. EDP Sciences, p 01015 Foley JT et al (2017) Low-cost antenna positioning system designed with axiomatic design. In MATEC web of conferences, vol 127. EDP Sciences, p 01015
27.
Zurück zum Zitat Mao W et al (2017) Indoor follow me drone. In: Proceedings of the 15th annual international conference on mobile systems, applications, and services, pp 345–358 Mao W et al (2017) Indoor follow me drone. In: Proceedings of the 15th annual international conference on mobile systems, applications, and services, pp 345–358
28.
Zurück zum Zitat Shahi SN et al (2008) High resolution DOA estimation in fully coherent environments. Prog Electromagn Res C 5:135–148 Shahi SN et al (2008) High resolution DOA estimation in fully coherent environments. Prog Electromagn Res C 5:135–148
29.
Zurück zum Zitat Li X et al (2016) Dynamic-music: accurate device-free indoor localization. In: Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing, pp 196–207 Li X et al (2016) Dynamic-music: accurate device-free indoor localization. In: Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing, pp 196–207
30.
Zurück zum Zitat Qian K et al (2017) Enabling phased array signal processing for mobile WiFi devices. IEEE Trans Mob Comput 17(8):1820–1833CrossRef Qian K et al (2017) Enabling phased array signal processing for mobile WiFi devices. IEEE Trans Mob Comput 17(8):1820–1833CrossRef
31.
Zurück zum Zitat Kumar S et al (2014) Accurate indoor localization with zero start-up cost. In: Proceedings of the 20th annual international conference on mobile computing and networking, pp 483–494 Kumar S et al (2014) Accurate indoor localization with zero start-up cost. In: Proceedings of the 20th annual international conference on mobile computing and networking, pp 483–494
32.
Zurück zum Zitat Adib F, Katabi D (2013) See through walls with WiFi! In: Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, pp 75–86 Adib F, Katabi D (2013) See through walls with WiFi! In: Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, pp 75–86
33.
Zurück zum Zitat Kotaru M et al (2015) Spotfi: Decimeter level localization using wifi. In: Proceedings of the ACM conference on special interest group on data communication, pp 269–282 Kotaru M et al (2015) Spotfi: Decimeter level localization using wifi. In: Proceedings of the ACM conference on special interest group on data communication, pp 269–282
34.
Zurück zum Zitat Zhang F et al (2020) Exploring LoRa for long-range through-wall sensing. Proc ACM Interactive Mob Wearable Ubiquitous Technol 4(2):1–27 Zhang F et al (2020) Exploring LoRa for long-range through-wall sensing. Proc ACM Interactive Mob Wearable Ubiquitous Technol 4(2):1–27
35.
Zurück zum Zitat Zhang F et al (2021) Unlocking the beamforming potential of LoRa for long-range multi-target respiration sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 5(2):1–25 Zhang F et al (2021) Unlocking the beamforming potential of LoRa for long-range multi-target respiration sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 5(2):1–25
36.
Zurück zum Zitat Tan S et al (2019) MultiTrack: Multi-user tracking and activity recognition using commodity WiFi. In: Proceedings of the 2019 CHI conference on human factors in computing systems, pp 1–12 Tan S et al (2019) MultiTrack: Multi-user tracking and activity recognition using commodity WiFi. In: Proceedings of the 2019 CHI conference on human factors in computing systems, pp 1–12
37.
Zurück zum Zitat Xie Y et al (2018) Precise power delay profiling with commodity Wi-Fi. IEEE Trans Mob Comput 18(6):1342–1355CrossRef Xie Y et al (2018) Precise power delay profiling with commodity Wi-Fi. IEEE Trans Mob Comput 18(6):1342–1355CrossRef
38.
Zurück zum Zitat Cai C et al (2021) Active acoustic sensing for hearing temperature under acoustic interference. IEEE Trans Mob Comput. Early Access Cai C et al (2021) Active acoustic sensing for hearing temperature under acoustic interference. IEEE Trans Mob Comput. Early Access
Metadaten
Titel
Wireless Signals and Signal Processing
verfasst von
Jiannong Cao
Yanni Yang
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-08345-7_2

Premium Partner