Skip to main content
Erschienen in: Journal of Materials Science 18/2018

18.06.2018 | Composites

WO3 nanolamellae/reduced graphene oxide nanocomposites for highly sensitive and selective acetone sensing

verfasst von: Jasmeet Kaur, Kanica Anand, Kanika Anand, Ravi Chand Singh

Erschienen in: Journal of Materials Science | Ausgabe 18/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

WO3 nanolamellae/reduced graphene oxide (RGO) nanocomposites have been synthesized by employing hydrothermal method where partial reduction in the graphene oxide and anchoring of nanolamellae on RGO sheets occur simultaneously. Nanocomposites with different amounts of RGO have been characterized by TEM, XRD, Raman spectroscopy, XPS, TGA-DTA, BET and PL spectroscopy. Chemiresistive sensors comprising of a thick layer of synthesized material have been fabricated on alumina substrates and investigated for acetone sensing. Sensing characteristics reveal that the sensor based on 2 wt% RGO nanocomposite not only exhibits high sensitivity, excellent selectivity and low optimum operating temperature but low detection limit (down to 1 ppm) as well. The mechanism for enhanced sensing performance of nanocomposite to acetone may be attributed to the presence of RGO sheets which facilitates large specific surface area for gas adsorption, superior conductivity, faster carrier transport and formation of heterojunctions at the interface between the RGO sheets and WO3 nanolamellae.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chatterjee SG, Chatterjee S, Ray AK, Chakraborty AK (2015) Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens Actuators B 221:1170–1181CrossRef Chatterjee SG, Chatterjee S, Ray AK, Chakraborty AK (2015) Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens Actuators B 221:1170–1181CrossRef
2.
Zurück zum Zitat Fenga Q, Li X, Wanga J, Gaskov AM (2016) Reduced graphene oxide (rGO) encapsulated Co3O4 composite nanofibers for highly selective ammonia sensors. Sens Actuators B 222:864–870CrossRef Fenga Q, Li X, Wanga J, Gaskov AM (2016) Reduced graphene oxide (rGO) encapsulated Co3O4 composite nanofibers for highly selective ammonia sensors. Sens Actuators B 222:864–870CrossRef
3.
Zurück zum Zitat Srivastava S, Jain K, Singh VN, Singh S, Vijayan N, Dilawar N, Gupta G, Senguttuvan TD (2012) Faster response of NO2 sensing in graphene–WO3 nanocomposites. Nanotechnology 23:205501–205507CrossRef Srivastava S, Jain K, Singh VN, Singh S, Vijayan N, Dilawar N, Gupta G, Senguttuvan TD (2012) Faster response of NO2 sensing in graphene–WO3 nanocomposites. Nanotechnology 23:205501–205507CrossRef
5.
Zurück zum Zitat Qin J, Cao M, Li N, Hu C (2011) Graphene-wrapped WO3 nanoparticles with improved performances in electrical conductivity and gas sensing properties. J Mater Chem 21:17167–17174CrossRef Qin J, Cao M, Li N, Hu C (2011) Graphene-wrapped WO3 nanoparticles with improved performances in electrical conductivity and gas sensing properties. J Mater Chem 21:17167–17174CrossRef
6.
Zurück zum Zitat Anand K, Singh O, Singh MP, Kaur J, Singh RC (2014) Hydrogen sensor based on graphene/ZnO nanocomposite. Sens Actuators B 195:409–415CrossRef Anand K, Singh O, Singh MP, Kaur J, Singh RC (2014) Hydrogen sensor based on graphene/ZnO nanocomposite. Sens Actuators B 195:409–415CrossRef
7.
Zurück zum Zitat Gu F, Nie R, Han D, Wang Z (2015) In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens Actuators B 219:94–99CrossRef Gu F, Nie R, Han D, Wang Z (2015) In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens Actuators B 219:94–99CrossRef
8.
Zurück zum Zitat Wang P, Wang D, Zhang M, Zhu Y, Xu Y, Ma X, Wang X (2016) ZnO nanosheets/graphene oxide nanocomposites for highly effective acetone vapour detection. Sens Actuators B 230:477–484CrossRef Wang P, Wang D, Zhang M, Zhu Y, Xu Y, Ma X, Wang X (2016) ZnO nanosheets/graphene oxide nanocomposites for highly effective acetone vapour detection. Sens Actuators B 230:477–484CrossRef
9.
Zurück zum Zitat Rout CS, Hegde M, Rao CNR (2008) H2S sensors based on tungsten oxide nanostructures. Sens Actuators B 128:488–493CrossRef Rout CS, Hegde M, Rao CNR (2008) H2S sensors based on tungsten oxide nanostructures. Sens Actuators B 128:488–493CrossRef
10.
Zurück zum Zitat Zou X, Li G, Wang P, Su J, Zhao J, Zhou L, Wang YN, Chen J (2012) A precursor route to single-crystalline WO3 nanoplates with an uneven surface and enhanced sensing properties. Dalton Trans 41:9773–9780CrossRef Zou X, Li G, Wang P, Su J, Zhao J, Zhou L, Wang YN, Chen J (2012) A precursor route to single-crystalline WO3 nanoplates with an uneven surface and enhanced sensing properties. Dalton Trans 41:9773–9780CrossRef
11.
Zurück zum Zitat Zhang H, Liu Z, Yang J, Guo W, Zhu L, Zheng W (2014) Temperature and acidity effects on WO3 nanostructures and gas-sensing properties of WO3 nanoplates. Mater Res Bull 57:260–267CrossRef Zhang H, Liu Z, Yang J, Guo W, Zhu L, Zheng W (2014) Temperature and acidity effects on WO3 nanostructures and gas-sensing properties of WO3 nanoplates. Mater Res Bull 57:260–267CrossRef
12.
Zurück zum Zitat Shi J, Hu G, Sun Y, Geng M, Wu J, Liu Y, Ge M, Tao J, Cao M, Dai N (2011) WO3 nanocrystals: synthesis and application in highly sensitive detection of acetone. Sens Actuators B 156:820–824CrossRef Shi J, Hu G, Sun Y, Geng M, Wu J, Liu Y, Ge M, Tao J, Cao M, Dai N (2011) WO3 nanocrystals: synthesis and application in highly sensitive detection of acetone. Sens Actuators B 156:820–824CrossRef
13.
Zurück zum Zitat Lee I, Choi S, Park K, Lee S, Choi S, Kim I, Park CO (2014) The stability, sensitivity and response transients of ZnO, SnO2 and WO3 sensors under acetone, toluene and H2S environments. Sens Actuators B 197:300–307CrossRef Lee I, Choi S, Park K, Lee S, Choi S, Kim I, Park CO (2014) The stability, sensitivity and response transients of ZnO, SnO2 and WO3 sensors under acetone, toluene and H2S environments. Sens Actuators B 197:300–307CrossRef
14.
Zurück zum Zitat Wang C, Li X, Feng C, Sun Y, Lu G (2015) Nanosheets assembled hierarchical flower-like WO3 nanostructures: synthesis, characterization, and their gas sensing properties. Sens Actuators, B 210:75–81CrossRef Wang C, Li X, Feng C, Sun Y, Lu G (2015) Nanosheets assembled hierarchical flower-like WO3 nanostructures: synthesis, characterization, and their gas sensing properties. Sens Actuators, B 210:75–81CrossRef
15.
Zurück zum Zitat Chen D, Hou X, Li T, Yin L, Fan B, Wang H, Li X, Xu H, Lu H, Zhang R, Sun J (2011) Effects of morphologies on acetone-sensing properties of tungsten trioxide nanocrystals. Sens Actuators B 153:373–381CrossRef Chen D, Hou X, Li T, Yin L, Fan B, Wang H, Li X, Xu H, Lu H, Zhang R, Sun J (2011) Effects of morphologies on acetone-sensing properties of tungsten trioxide nanocrystals. Sens Actuators B 153:373–381CrossRef
16.
Zurück zum Zitat Yu J, Wen H, Shafiei M, Field MR, Liu ZF, Wlodarski W, Motta N, Li YX, Kalantar-zadeh K, Lai PT (2013) A hydrogen/methane sensor based on niobium tungsten oxide nanorods synthesised by hydrothermal method. Sens Actuators B 184:118–129CrossRef Yu J, Wen H, Shafiei M, Field MR, Liu ZF, Wlodarski W, Motta N, Li YX, Kalantar-zadeh K, Lai PT (2013) A hydrogen/methane sensor based on niobium tungsten oxide nanorods synthesised by hydrothermal method. Sens Actuators B 184:118–129CrossRef
17.
Zurück zum Zitat Upadhyay SB, Mishra RK, Sahay PP (2014) Structural and alcohol response characteristics of Sn-doped WO3 nanosheets. Sens Actuators B 193:19–27CrossRef Upadhyay SB, Mishra RK, Sahay PP (2014) Structural and alcohol response characteristics of Sn-doped WO3 nanosheets. Sens Actuators B 193:19–27CrossRef
18.
Zurück zum Zitat Upadhyay SB, Mishra RK, Sahay PP (2015) Enhanced acetone response in co-precipitated WO3 nanostructures upon indium doping. Sens Actuators B 209:368–376CrossRef Upadhyay SB, Mishra RK, Sahay PP (2015) Enhanced acetone response in co-precipitated WO3 nanostructures upon indium doping. Sens Actuators B 209:368–376CrossRef
19.
Zurück zum Zitat Wang Z, Fan X, Li C, Men G, Han D, Gu F (2018) Humidity-sensing performance of 3DOM WO3 with controllable structural modification. ACS Appl Mater Interfaces 10:3776–3783CrossRef Wang Z, Fan X, Li C, Men G, Han D, Gu F (2018) Humidity-sensing performance of 3DOM WO3 with controllable structural modification. ACS Appl Mater Interfaces 10:3776–3783CrossRef
20.
Zurück zum Zitat Wang C, Sun R, Li X, Sun Y, Sun P, Liu F, Lu G (2014) Hierarchical flower-like WO3 nanostructures and their gas sensing properties. Sens Actuators B 204:224–230CrossRef Wang C, Sun R, Li X, Sun Y, Sun P, Liu F, Lu G (2014) Hierarchical flower-like WO3 nanostructures and their gas sensing properties. Sens Actuators B 204:224–230CrossRef
21.
Zurück zum Zitat Bai X, Ji H, Gao P, Zhang Y, Sun X (2014) Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors. Sens Actuators B 193:100–106CrossRef Bai X, Ji H, Gao P, Zhang Y, Sun X (2014) Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors. Sens Actuators B 193:100–106CrossRef
22.
Zurück zum Zitat Khatko V, Llobet E, Vilanova X, Brezmes J, Hubalek J, Malysz K, Correig X (2005) Gas sensing properties of nanoparticle indium-doped WO3 thick films. Sens Actuators B 111–112:45–51CrossRef Khatko V, Llobet E, Vilanova X, Brezmes J, Hubalek J, Malysz K, Correig X (2005) Gas sensing properties of nanoparticle indium-doped WO3 thick films. Sens Actuators B 111–112:45–51CrossRef
23.
Zurück zum Zitat Xia H, Wang Y, Kong F, Wang S, Zhu B, Guo X, Zhang J, Wang Y, Wu S (2008) Au-doped WO3-based sensor for NO2 detection at low operating temperature. Sens Actuators B 134:133–139CrossRef Xia H, Wang Y, Kong F, Wang S, Zhu B, Guo X, Zhang J, Wang Y, Wu S (2008) Au-doped WO3-based sensor for NO2 detection at low operating temperature. Sens Actuators B 134:133–139CrossRef
24.
Zurück zum Zitat Xiaoqin J, Dawen Z, Jian Z, Keng X, Jinjin W, Baokun Zh, Changsheng X (2015) Graphene-wrapped WO3 nanospheres with room-temperature NO2 sensing induced by interface charge transfer. Sens Actuators B 220:201–209CrossRef Xiaoqin J, Dawen Z, Jian Z, Keng X, Jinjin W, Baokun Zh, Changsheng X (2015) Graphene-wrapped WO3 nanospheres with room-temperature NO2 sensing induced by interface charge transfer. Sens Actuators B 220:201–209CrossRef
25.
Zurück zum Zitat Xiangfeng C, Tao H, Feng G, Yongping D, Wenqi S, Linshan B (2015) Gas sensing properties of graphene–WO3 composites prepared by hydrothermal method. Mater Sci Eng B 193:97–104CrossRef Xiangfeng C, Tao H, Feng G, Yongping D, Wenqi S, Linshan B (2015) Gas sensing properties of graphene–WO3 composites prepared by hydrothermal method. Mater Sci Eng B 193:97–104CrossRef
26.
Zurück zum Zitat Su P, Peng S (2015) Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Talanta 132:398–405CrossRef Su P, Peng S (2015) Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Talanta 132:398–405CrossRef
27.
Zurück zum Zitat Shi J, Chenga Z, Gao L, Zhang Y, Xu J, Zhao H (2016) Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties. Sens Actuators B 230:736–745CrossRef Shi J, Chenga Z, Gao L, Zhang Y, Xu J, Zhao H (2016) Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties. Sens Actuators B 230:736–745CrossRef
28.
Zurück zum Zitat Choi S, Fuchs F, Demadrille R, Grévin B, Jang B, Lee S, Lee J, Tuller HL, Kim I (2014) Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers for diagnosis of diseases. ACS Appl Mater Interfaces 6:9061–9070CrossRef Choi S, Fuchs F, Demadrille R, Grévin B, Jang B, Lee S, Lee J, Tuller HL, Kim I (2014) Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers for diagnosis of diseases. ACS Appl Mater Interfaces 6:9061–9070CrossRef
29.
Zurück zum Zitat Perfecto TM, Zito CA, Volanti DP (2016) Room-temperature volatile organic compounds sensing based on WO3·0.33H2O, hexagonal-WO3, and their reduced graphene oxide conposites. RSC Adv. 6:105171–105179CrossRef Perfecto TM, Zito CA, Volanti DP (2016) Room-temperature volatile organic compounds sensing based on WO3·0.33H2O, hexagonal-WO3, and their reduced graphene oxide conposites. RSC Adv. 6:105171–105179CrossRef
30.
Zurück zum Zitat Kaur J, Anand K, Kaur A, Singh RC (2018) Sensitive and selective acetone sensor based on Gd doped WO3/reduced graphene oxide nanocomposite. Sens Actuators B 258:1022–1035CrossRef Kaur J, Anand K, Kaur A, Singh RC (2018) Sensitive and selective acetone sensor based on Gd doped WO3/reduced graphene oxide nanocomposite. Sens Actuators B 258:1022–1035CrossRef
31.
Zurück zum Zitat Chen L, Huang L, Lin Y, Sai L, Chang Q, Shi W, Chen Q (2018) Fully gravure-printed WO3/Pt-decorated rGO nanosheets composite film for detection of acetone. Sens Actuators B 255:1482–1490CrossRef Chen L, Huang L, Lin Y, Sai L, Chang Q, Shi W, Chen Q (2018) Fully gravure-printed WO3/Pt-decorated rGO nanosheets composite film for detection of acetone. Sens Actuators B 255:1482–1490CrossRef
32.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
33.
Zurück zum Zitat Anand K, Kaur J, Singh RC, Thangaraj R (2015) Effect of terbium doping on structural, optical and gas sensing properties of In2O3 nanoparticles. Mater Sci Semicond Process 39:476–483CrossRef Anand K, Kaur J, Singh RC, Thangaraj R (2015) Effect of terbium doping on structural, optical and gas sensing properties of In2O3 nanoparticles. Mater Sci Semicond Process 39:476–483CrossRef
34.
Zurück zum Zitat Chen X, Kalenczuk RJ, Wajda A, Łapczuk J, Kurzewski M, Drozdzik M, Chu PK, Palen EB (2012) Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Coll Surf B 89:79–85CrossRef Chen X, Kalenczuk RJ, Wajda A, Łapczuk J, Kurzewski M, Drozdzik M, Chu PK, Palen EB (2012) Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Coll Surf B 89:79–85CrossRef
35.
Zurück zum Zitat Xu C, Wang X, Zhu J (2008) Graphene-metal particle nanocomposites. J Phys Chem C 112:19841–19845CrossRef Xu C, Wang X, Zhu J (2008) Graphene-metal particle nanocomposites. J Phys Chem C 112:19841–19845CrossRef
36.
Zurück zum Zitat Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884CrossRef Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884CrossRef
37.
Zurück zum Zitat Kaur J, Anand K, Anand K, Thangaraj R, Singh RC (2016) Synthesis, characterization and photocatalytic activity of visible-light-driven reduced graphene oxide–CeO2 nanocomposite. Indian J Phys 90:1183–1194CrossRef Kaur J, Anand K, Anand K, Thangaraj R, Singh RC (2016) Synthesis, characterization and photocatalytic activity of visible-light-driven reduced graphene oxide–CeO2 nanocomposite. Indian J Phys 90:1183–1194CrossRef
38.
Zurück zum Zitat Feng Q, Li X, Wang J (2017) Percolation effect of reduced graphene oxide (rGO) on ammonia sensing of rGO-SnO2 composite based sensor. Sens and Actuators B 243:1115–1126CrossRef Feng Q, Li X, Wang J (2017) Percolation effect of reduced graphene oxide (rGO) on ammonia sensing of rGO-SnO2 composite based sensor. Sens and Actuators B 243:1115–1126CrossRef
39.
Zurück zum Zitat Zhu L, Liu Z, Xia P, Li H, Xie Y (2018) Synthesis of hierarchical ZnO & graphene composites with enhanced photocatalytic activity. Ceram Int 44:849–856CrossRef Zhu L, Liu Z, Xia P, Li H, Xie Y (2018) Synthesis of hierarchical ZnO & graphene composites with enhanced photocatalytic activity. Ceram Int 44:849–856CrossRef
40.
Zurück zum Zitat Han J, Zhang D, Maitarad P, Shi L, Cai S, Li H, Huang L, Zhang J (2015) Fe2O3 nanoparticles anchored in situ on carbon nanotubes via an ethanol-thermal strategy for the selective catalytic reduction of NO with NH3. Catal Sci Technol 5:438–446CrossRef Han J, Zhang D, Maitarad P, Shi L, Cai S, Li H, Huang L, Zhang J (2015) Fe2O3 nanoparticles anchored in situ on carbon nanotubes via an ethanol-thermal strategy for the selective catalytic reduction of NO with NH3. Catal Sci Technol 5:438–446CrossRef
41.
Zurück zum Zitat Maitarad P, Zhang D, Gao R, Shi L, Li H, Huang L, Rungrotmongkol T, Zhang J (2013) A combination of experimental and theoretical investigation of MnOx/Ce0.9Zr0.1O2 nanorods for selective catalytic reduction of ammonia. J Phys Chem C 117:9999–10006CrossRef Maitarad P, Zhang D, Gao R, Shi L, Li H, Huang L, Rungrotmongkol T, Zhang J (2013) A combination of experimental and theoretical investigation of MnOx/Ce0.9Zr0.1O2 nanorods for selective catalytic reduction of ammonia. J Phys Chem C 117:9999–10006CrossRef
42.
Zurück zum Zitat Shojaee M, Nasresfahani S, Sheikhi MH (2018) Hydrothermally synthesized Pd-loaded SnO2/partially reduced graphene oxide nanocomposite for effective detection of carbon monoxide at room temperature. Sens Actuators B 254:457–467CrossRef Shojaee M, Nasresfahani S, Sheikhi MH (2018) Hydrothermally synthesized Pd-loaded SnO2/partially reduced graphene oxide nanocomposite for effective detection of carbon monoxide at room temperature. Sens Actuators B 254:457–467CrossRef
43.
Zurück zum Zitat Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruof RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruof RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
44.
Zurück zum Zitat Anand K, Singh MP, Singh O, Kohli N, Singh RC (2013) Optical and thermal properties of precursor-controlled graphene–zinc nanocomposites. Mater Sci Semicond Process 16:1706–1712CrossRef Anand K, Singh MP, Singh O, Kohli N, Singh RC (2013) Optical and thermal properties of precursor-controlled graphene–zinc nanocomposites. Mater Sci Semicond Process 16:1706–1712CrossRef
45.
Zurück zum Zitat Zheng Q, Fang G, Cheng F, Lei H, Wang W, Qin P, Zhou H (2012) Hybrid graphene–ZnO nanocomposites as electron acceptor in polymer-based bulk-heterojunction organic photovoltaics. J Phys D 45:455103–455110CrossRef Zheng Q, Fang G, Cheng F, Lei H, Wang W, Qin P, Zhou H (2012) Hybrid graphene–ZnO nanocomposites as electron acceptor in polymer-based bulk-heterojunction organic photovoltaics. J Phys D 45:455103–455110CrossRef
46.
Zurück zum Zitat Yin L, Chen D, Cui X, Ge L, Yang J, Yu L, Zhang B, Zhang R, Shao G (2014) Normal-pressure microwave rapid synthesis of hierarchical SnO2@rGO nanostructures with super high surface areas as high-quality gas-sensing and electrochemical active materials. Nanoscale 6:13690–13700CrossRef Yin L, Chen D, Cui X, Ge L, Yang J, Yu L, Zhang B, Zhang R, Shao G (2014) Normal-pressure microwave rapid synthesis of hierarchical SnO2@rGO nanostructures with super high surface areas as high-quality gas-sensing and electrochemical active materials. Nanoscale 6:13690–13700CrossRef
48.
Zurück zum Zitat Liu S, Liu X, Li Z, Yang S, Wang J (2011) Fabrication of free-standing graphene/polyaniline nanofibers composite paper via electrostatic adsorption for electrochemical supercapacitors. New J Chem 35:369–374CrossRef Liu S, Liu X, Li Z, Yang S, Wang J (2011) Fabrication of free-standing graphene/polyaniline nanofibers composite paper via electrostatic adsorption for electrochemical supercapacitors. New J Chem 35:369–374CrossRef
49.
Zurück zum Zitat Liu J, Li S, Zhang B, Wang Y, Gao Y, Liang X, Wang Y, Lu G (2017) Flower-like In2O3 modified by reduced graphene oxide sheets serving as a highly sensitive gas sensor for trace NO2 detection. J Colloid Interface Sci 504:206–213CrossRef Liu J, Li S, Zhang B, Wang Y, Gao Y, Liang X, Wang Y, Lu G (2017) Flower-like In2O3 modified by reduced graphene oxide sheets serving as a highly sensitive gas sensor for trace NO2 detection. J Colloid Interface Sci 504:206–213CrossRef
50.
Zurück zum Zitat Zhang D, Liu J, Chang H, Liu A, Xia B (2015) Characterization of a hybrid composite of SnO2 nanocrystal-decorated reduced graphene oxide for ppm-level ethanol gas sensing application. RSC Adv 5:18666–18672CrossRef Zhang D, Liu J, Chang H, Liu A, Xia B (2015) Characterization of a hybrid composite of SnO2 nanocrystal-decorated reduced graphene oxide for ppm-level ethanol gas sensing application. RSC Adv 5:18666–18672CrossRef
51.
Zurück zum Zitat Zhang D, Liu A, Chang H, Xia B (2015) Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv 5:3016–3022CrossRef Zhang D, Liu A, Chang H, Xia B (2015) Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv 5:3016–3022CrossRef
52.
Zurück zum Zitat Chen Y, Zhang W, Wu Q (2017) A highly sensitive room-temperature sensing material for NH3: snO2-nanorods coupled by rGO. Sens Actuators B 242:1216–1226CrossRef Chen Y, Zhang W, Wu Q (2017) A highly sensitive room-temperature sensing material for NH3: snO2-nanorods coupled by rGO. Sens Actuators B 242:1216–1226CrossRef
53.
Zurück zum Zitat Ahmed B, Kumar S, Ojha AK, Donfack P, Materny A (2017) Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material. Spectrochim Acta Part A 175:250–261CrossRef Ahmed B, Kumar S, Ojha AK, Donfack P, Materny A (2017) Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material. Spectrochim Acta Part A 175:250–261CrossRef
54.
Zurück zum Zitat Weng B, Wu J, Zhang N, Xu Y (2014) Observing the role of graphene in boosting the two- electron reduction of oxygen in graphene-WO3 photocatalyts. Langmuir 30:5574–5584CrossRef Weng B, Wu J, Zhang N, Xu Y (2014) Observing the role of graphene in boosting the two- electron reduction of oxygen in graphene-WO3 photocatalyts. Langmuir 30:5574–5584CrossRef
55.
Zurück zum Zitat Song Z, Wei Z, Wang B, Luo Z, Xu S, Zhang W, Yu H, Li M, Huang Z, Zang J, Yi F, Liu H (2016) Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chem Mater 28:1205–1212CrossRef Song Z, Wei Z, Wang B, Luo Z, Xu S, Zhang W, Yu H, Li M, Huang Z, Zang J, Yi F, Liu H (2016) Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chem Mater 28:1205–1212CrossRef
56.
Zurück zum Zitat He JJ, Niu CG, Yang C, Wang JD, Su XT (2014) Reduced graphene oxide anchored with zinc oxide nanoparticles with enhanced photocatalytic activity and gas sensing properties. RSC Adv 4:60253–60259CrossRef He JJ, Niu CG, Yang C, Wang JD, Su XT (2014) Reduced graphene oxide anchored with zinc oxide nanoparticles with enhanced photocatalytic activity and gas sensing properties. RSC Adv 4:60253–60259CrossRef
57.
Zurück zum Zitat Liu F, Chu X, Dong Y, Zhang W, Sun W, Shen L (2013) Acetone gas sensors based on graphene-ZnFe2O4 composite prepared by solvothermal method. Sens Actuators B 188:469–474CrossRef Liu F, Chu X, Dong Y, Zhang W, Sun W, Shen L (2013) Acetone gas sensors based on graphene-ZnFe2O4 composite prepared by solvothermal method. Sens Actuators B 188:469–474CrossRef
58.
Zurück zum Zitat Wang C, Zhu JW, Liang SM, Bi HP, Han QF, Liu XH, Wang X (2014) Reduced graphene oxide decorated with CuO–ZnO hetero-junctions: towards high selective gas-sensing property to acetone. J Mater Chem A 2:18635–18643CrossRef Wang C, Zhu JW, Liang SM, Bi HP, Han QF, Liu XH, Wang X (2014) Reduced graphene oxide decorated with CuO–ZnO hetero-junctions: towards high selective gas-sensing property to acetone. J Mater Chem A 2:18635–18643CrossRef
59.
Zurück zum Zitat Zhang B, Liu J, Cui X, Wang Y, Gao Y, Sun P, Liu F, Shimanoe K, Yamazoe N, Lu G (2017) Enhanced gas sensing properties to acetone vapor achieved by Fe2O3 particles ameliorated with reduced graphene oxide sheets. Sens Actuators B 241:904–914CrossRef Zhang B, Liu J, Cui X, Wang Y, Gao Y, Sun P, Liu F, Shimanoe K, Yamazoe N, Lu G (2017) Enhanced gas sensing properties to acetone vapor achieved by Fe2O3 particles ameliorated with reduced graphene oxide sheets. Sens Actuators B 241:904–914CrossRef
60.
Zurück zum Zitat Nasution TI, Nainggolan I, Hutagalung SD, Ahmad KR, Ahmad ZA (2013) The sensing mechanism and detection of low concentration acetone using chitosan-based sensors. Sens Actuators B 177:522–528CrossRef Nasution TI, Nainggolan I, Hutagalung SD, Ahmad KR, Ahmad ZA (2013) The sensing mechanism and detection of low concentration acetone using chitosan-based sensors. Sens Actuators B 177:522–528CrossRef
61.
Zurück zum Zitat Baysak E, Yuvayapan S, Aydogan A, Hizal G (2018) Calix[4]pyrrole-decorated carbon nanotubes on paper for sensing acetone vapor. Sens Actuators B 258:484–491CrossRef Baysak E, Yuvayapan S, Aydogan A, Hizal G (2018) Calix[4]pyrrole-decorated carbon nanotubes on paper for sensing acetone vapor. Sens Actuators B 258:484–491CrossRef
62.
Zurück zum Zitat Neri G, Leonardi SG, Latino M, Donato N, Baek S, Conte DE, Russo PA, Pinna N (2013) Sensing behavior of SnO2/reduced graphene oxide nanocomposites toward NO2. Sens Actuators B 179:61–68CrossRef Neri G, Leonardi SG, Latino M, Donato N, Baek S, Conte DE, Russo PA, Pinna N (2013) Sensing behavior of SnO2/reduced graphene oxide nanocomposites toward NO2. Sens Actuators B 179:61–68CrossRef
63.
Zurück zum Zitat Rawal I (2015) Facial synthesis of hexagonal metal oxide nanoparticles for low temperature ammonia gas sensing applications. RSC Adv. 5:4135–4142CrossRef Rawal I (2015) Facial synthesis of hexagonal metal oxide nanoparticles for low temperature ammonia gas sensing applications. RSC Adv. 5:4135–4142CrossRef
64.
Zurück zum Zitat Tammanoon N, Wisitsoraat A, Sriprachuabwong C, Phokharatkul D, Tuantranont A, Phanichphant S, Liewhiran C (2015) Ultrasensitive NO2 sensor based on ohmic metal−semiconductor interfaces of electrolytically exfoliated graphene/flame-spray-made SnO2 nanoparticles composite operating at low temperatures. ACS Appl Mater Interfaces 7:24338–24352CrossRef Tammanoon N, Wisitsoraat A, Sriprachuabwong C, Phokharatkul D, Tuantranont A, Phanichphant S, Liewhiran C (2015) Ultrasensitive NO2 sensor based on ohmic metal−semiconductor interfaces of electrolytically exfoliated graphene/flame-spray-made SnO2 nanoparticles composite operating at low temperatures. ACS Appl Mater Interfaces 7:24338–24352CrossRef
65.
Zurück zum Zitat Inyawilert K, Wisitsoraat A, Sriprachaubwong C, Tuantranont A, Phanichphant S, Liewhiran C (2015) Rapid ethanol sensor based on electrolytically-exfoliated graphene-loaded flame-made In-doped SnO2 composite film. Sens Actuators B 209:40–55CrossRef Inyawilert K, Wisitsoraat A, Sriprachaubwong C, Tuantranont A, Phanichphant S, Liewhiran C (2015) Rapid ethanol sensor based on electrolytically-exfoliated graphene-loaded flame-made In-doped SnO2 composite film. Sens Actuators B 209:40–55CrossRef
66.
Zurück zum Zitat Li L, He S, Liu M, Zhang C, Chen W (2015) Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal Chem 87:1638–1645CrossRef Li L, He S, Liu M, Zhang C, Chen W (2015) Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal Chem 87:1638–1645CrossRef
67.
Zurück zum Zitat Kaur J, Anand K, Kohli N, Kaur A, Singh RC (2018) Temperature dependent selective detection of hydrogen and acetone using Pd doped WO3/reduced graphene oxide nanocomposite. Chem Phys Lett 701:115–125CrossRef Kaur J, Anand K, Kohli N, Kaur A, Singh RC (2018) Temperature dependent selective detection of hydrogen and acetone using Pd doped WO3/reduced graphene oxide nanocomposite. Chem Phys Lett 701:115–125CrossRef
Metadaten
Titel
WO3 nanolamellae/reduced graphene oxide nanocomposites for highly sensitive and selective acetone sensing
verfasst von
Jasmeet Kaur
Kanica Anand
Kanika Anand
Ravi Chand Singh
Publikationsdatum
18.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 18/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2558-z

Weitere Artikel der Ausgabe 18/2018

Journal of Materials Science 18/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.