Skip to main content
Erschienen in: Journal of Nanoparticle Research 11/2013

01.11.2013 | Research Paper

Workplace exposure to nanoparticles from gas metal arc welding process

verfasst von: Meibian Zhang, Le Jian, Pingfan Bin, Mingluan Xing, Jianlin Lou, Liming Cong, Hua Zou

Erschienen in: Journal of Nanoparticle Research | Ausgabe 11/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Workplace exposure to nanoparticles from gas metal arc welding (GMAW) process in an automobile manufacturing factory was investigated using a combination of multiple metrics and a comparison with background particles. The number concentration (NC), lung-deposited surface area concentration (SAC), estimated SAC and mass concentration (MC) of nanoparticles produced from the GMAW process were significantly higher than those of background particles before welding (P < 0.01). A bimodal size distribution by mass for welding particles with two peak values (i.e., 10,000–18,000 and 560–320 nm) and a unimodal size distribution by number with 190.7-nm mode size or 154.9-nm geometric size were observed. Nanoparticles by number comprised 60.7 % of particles, whereas nanoparticles by mass only accounted for 18.2 % of the total particles. The morphology of welding particles was dominated by the formation of chain-like agglomerates of primary particles. The metal composition of these welding particles consisted primarily of Fe, Mn, and Zn. The size distribution, morphology, and elemental compositions of welding particles were significantly different from background particles. Working activities, sampling distances from the source, air velocity, engineering control measures, and background particles in working places had significant influences on concentrations of airborne nanoparticle. In addition, SAC showed a high correlation with NC and a relatively low correlation with MC. These findings indicate that the GMAW process is able to generate significant levels of nanoparticles. It is recommended that a combination of multiple metrics is measured as part of a well-designed sampling strategy for airborne nanoparticles. Key exposure factors, such as particle agglomeration/aggregation, background particles, working activities, temporal and spatial distributions of the particles, air velocity, engineering control measures, should be investigated when measuring workplace exposure to nanoparticles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Antonini JM (2003) Health effects of welding. Crit Rev Toxicol 33(1):61–103CrossRef Antonini JM (2003) Health effects of welding. Crit Rev Toxicol 33(1):61–103CrossRef
Zurück zum Zitat Banfield JF, Navrotsky A (2001) Nanoparticles and the environment. Mineralogical Society of America, Washington, DC Banfield JF, Navrotsky A (2001) Nanoparticles and the environment. Mineralogical Society of America, Washington, DC
Zurück zum Zitat IUTA, BAuA, BG RCI, IFA, TUD, VCI (2011) Tiered approach to an exposure measurement and assessment of nanoscale aerosols released from engineered nanomaterials in workplace operations. In: Air quality and sustainable nanotechnology, p 1–26 IUTA, BAuA, BG RCI, IFA, TUD, VCI (2011) Tiered approach to an exposure measurement and assessment of nanoscale aerosols released from engineered nanomaterials in workplace operations. In: Air quality and sustainable nanotechnology, p 1–26
Zurück zum Zitat Brouwer D (2010) Exposure to manufactured nanoparticles in different workplaces. Toxicology 269(2–3):120–127CrossRef Brouwer D (2010) Exposure to manufactured nanoparticles in different workplaces. Toxicology 269(2–3):120–127CrossRef
Zurück zum Zitat Brouwer DH, Gijsbers JH, Lurvink MW (2004) Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies. Ann Occup Hyg 48(5):439–453CrossRef Brouwer DH, Gijsbers JH, Lurvink MW (2004) Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies. Ann Occup Hyg 48(5):439–453CrossRef
Zurück zum Zitat Charron A, Harrison RM (2003) Particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmos Environ 37(29):4109–4119CrossRef Charron A, Harrison RM (2003) Particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmos Environ 37(29):4109–4119CrossRef
Zurück zum Zitat Cheng YH, Chao YC, Wu CH, Tsai CJ, Uang SN, Shih TS (2008) Measurements of ultrafine particle concentrations and size distribution in an iron foundry. J Hazard Mater 158(1):124–130CrossRef Cheng YH, Chao YC, Wu CH, Tsai CJ, Uang SN, Shih TS (2008) Measurements of ultrafine particle concentrations and size distribution in an iron foundry. J Hazard Mater 158(1):124–130CrossRef
Zurück zum Zitat Dasch J, D’Arcy J (2008) Physical and chemical characterization of airborne particles from welding operations in automotive plants. J Occup Environ Hyg 5(7):444–454CrossRef Dasch J, D’Arcy J (2008) Physical and chemical characterization of airborne particles from welding operations in automotive plants. J Occup Environ Hyg 5(7):444–454CrossRef
Zurück zum Zitat Dasch J, D’Arcy J, Gundrum A, Sutherland J, Johnson J, Carlson D (2005) Characterization of fine particles from machining in automotive plants. J Occup Environ Hyg 2(12):609–625CrossRef Dasch J, D’Arcy J, Gundrum A, Sutherland J, Johnson J, Carlson D (2005) Characterization of fine particles from machining in automotive plants. J Occup Environ Hyg 2(12):609–625CrossRef
Zurück zum Zitat Demou E, Peter P, Hellweg S (2008) Exposure to manufactured nanostructured particles in an industrial pilot plant. Ann Occup Hyg 52(8):695–706CrossRef Demou E, Peter P, Hellweg S (2008) Exposure to manufactured nanostructured particles in an industrial pilot plant. Ann Occup Hyg 52(8):695–706CrossRef
Zurück zum Zitat Elihn K, Berg P (2009) Ultrafine particle characteristics in seven industrial plants. Ann Occup Hyg 53(5):475–484CrossRef Elihn K, Berg P (2009) Ultrafine particle characteristics in seven industrial plants. Ann Occup Hyg 53(5):475–484CrossRef
Zurück zum Zitat Fuglsang K, Gram LK, Markussen JB, Kristensen JK (2011) Measurement of ultrafine particles in emissions from welding processes. In: 6th International conference on joining of materials, elsinore, 10–13 May 2011 Fuglsang K, Gram LK, Markussen JB, Kristensen JK (2011) Measurement of ultrafine particles in emissions from welding processes. In: 6th International conference on joining of materials, elsinore, 10–13 May 2011
Zurück zum Zitat Gomes JF, Albuquerque PC, Miranda RM, Santos TG, Vieira MT (2012) Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes. Inhal Toxicol 24(11):774–781. doi:10.3109/08958378.2012.717 CrossRef Gomes JF, Albuquerque PC, Miranda RM, Santos TG, Vieira MT (2012) Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes. Inhal Toxicol 24(11):774–781. doi:10.​3109/​08958378.​2012.​717 CrossRef
Zurück zum Zitat Heitbrink WA, Evans DE, Ku BK, Maynard AD, Slavin TJ, Peters TM (2009) Relationships among particle number, surface area, and respirable mass concentrations in automotive engine manufacturing. J Occup Environ Hyg 6(1):19–31CrossRef Heitbrink WA, Evans DE, Ku BK, Maynard AD, Slavin TJ, Peters TM (2009) Relationships among particle number, surface area, and respirable mass concentrations in automotive engine manufacturing. J Occup Environ Hyg 6(1):19–31CrossRef
Zurück zum Zitat Hewett P (1995) The particle size distribution, density, and specific surface area of welding fumes from SMAW and GMAW mild and stainless steel consumables. Am Ind Hyg Assoc J 56(2):128–135CrossRef Hewett P (1995) The particle size distribution, density, and specific surface area of welding fumes from SMAW and GMAW mild and stainless steel consumables. Am Ind Hyg Assoc J 56(2):128–135CrossRef
Zurück zum Zitat Hovde CA, Raynor PC (2007) Effects of voltage and wire feed speed on weld fume characteristics. J Occup Environ Hyg 4(12):903–912CrossRef Hovde CA, Raynor PC (2007) Effects of voltage and wire feed speed on weld fume characteristics. J Occup Environ Hyg 4(12):903–912CrossRef
Zurück zum Zitat Hussein T, KarPPinen A, Kukkonen J (2006) Meteorological dependence of size fractionated number concentrations of urban aerosol particles. Atmos Environ 40(8):1427–1440CrossRef Hussein T, KarPPinen A, Kukkonen J (2006) Meteorological dependence of size fractionated number concentrations of urban aerosol particles. Atmos Environ 40(8):1427–1440CrossRef
Zurück zum Zitat ISO (1997) Road vehicles—test dust for filter evaluation—Part 1: Arizona test dust. ISO 12103-1-1997 ISO (1997) Road vehicles—test dust for filter evaluation—Part 1: Arizona test dust. ISO 12103-1-1997
Zurück zum Zitat Jenkins NT, Pierce WMG, Eagar TW (2005) Particle size distribution of gas metal and flux cored arc welding fumes. Weld Res 84(10):156–163 Jenkins NT, Pierce WMG, Eagar TW (2005) Particle size distribution of gas metal and flux cored arc welding fumes. Weld Res 84(10):156–163
Zurück zum Zitat Johnson DR, Methner MM, Kennedy AJ, Steevens JA (2010) Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies. Environ Health Perspect 118(1):49–54. doi:10.1289/ehp.0901076 Johnson DR, Methner MM, Kennedy AJ, Steevens JA (2010) Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies. Environ Health Perspect 118(1):49–54. doi:10.​1289/​ehp.​0901076
Zurück zum Zitat Khlystov A, Stanier C, Pandis SN (2004) An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol. Aerosol Sci Technol 38(1):229–238 Khlystov A, Stanier C, Pandis SN (2004) An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol. Aerosol Sci Technol 38(1):229–238
Zurück zum Zitat Kuhlbusch T, Asbach C, Fissan H, Göhler D, Stintz M (2011) Nanoparticle exposure at nanotechnology workplaces: a review. Part Fibre Toxicol 8(22):1–18 Kuhlbusch T, Asbach C, Fissan H, Göhler D, Stintz M (2011) Nanoparticle exposure at nanotechnology workplaces: a review. Part Fibre Toxicol 8(22):1–18
Zurück zum Zitat La Vecchia GM, Maestrelli P (2011) New welding processes and health effects of welding. G Ital Med Lav Ergon 33(3):252–256 La Vecchia GM, Maestrelli P (2011) New welding processes and health effects of welding. G Ital Med Lav Ergon 33(3):252–256
Zurück zum Zitat Lee M, McClellan WJ, Candela J, Andrews D, Biswas P (2007) Reduction of nanoparticle exposure to welding aerosols by modification of the ventilation system in a workplace. J Nanopart Res 9(1):127–136CrossRef Lee M, McClellan WJ, Candela J, Andrews D, Biswas P (2007) Reduction of nanoparticle exposure to welding aerosols by modification of the ventilation system in a workplace. J Nanopart Res 9(1):127–136CrossRef
Zurück zum Zitat Lepeule J, Laden F, Dockery D, Schwartz J (2012) Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environ Health Perspect 120(7):965–970CrossRef Lepeule J, Laden F, Dockery D, Schwartz J (2012) Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environ Health Perspect 120(7):965–970CrossRef
Zurück zum Zitat Maynard AD, Aitken RJ (2007) Assessing exposure to airborne nanomaterials: current abilities and future requirements. Nanotoxicology 1(1):26–41CrossRef Maynard AD, Aitken RJ (2007) Assessing exposure to airborne nanomaterials: current abilities and future requirements. Nanotoxicology 1(1):26–41CrossRef
Zurück zum Zitat Methner MM (2008) Engineering case reports. Effectiveness of local exhaust ventilation (LEV) in controlling engineered nanomaterial emissions during reactor cleanout operations. J Occup Environ Hyg 5(6):63–69CrossRef Methner MM (2008) Engineering case reports. Effectiveness of local exhaust ventilation (LEV) in controlling engineered nanomaterial emissions during reactor cleanout operations. J Occup Environ Hyg 5(6):63–69CrossRef
Zurück zum Zitat Methner M, Hodson L, Dames A, Geraci C (2010) Nanoparticle Emission Assessment Technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials–Part B: results from 12 field studies. J Occup Environ Hyg 7(3):163–176CrossRef Methner M, Hodson L, Dames A, Geraci C (2010) Nanoparticle Emission Assessment Technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials–Part B: results from 12 field studies. J Occup Environ Hyg 7(3):163–176CrossRef
Zurück zum Zitat Methner M, Beaucham C, Crawford C, Hodson L, Geraci C (2012) Field application of the Nanoparticle Emission Assessment Technique (NEAT): task-based air monitoring during the processing of engineered nanomaterials (ENM) at four facilities. J Occup Environ Hyg 9(9):543–555CrossRef Methner M, Beaucham C, Crawford C, Hodson L, Geraci C (2012) Field application of the Nanoparticle Emission Assessment Technique (NEAT): task-based air monitoring during the processing of engineered nanomaterials (ENM) at four facilities. J Occup Environ Hyg 9(9):543–555CrossRef
Zurück zum Zitat Morawska L, Wang H, Ristovski Z, Jayaratne ER, Johnson G, Cheung HC, Ling X, He C (2009) JEM spotlight: environmental monitoring of airborne nanoparticles. J Environ Monit 11(10):1758–1773CrossRef Morawska L, Wang H, Ristovski Z, Jayaratne ER, Johnson G, Cheung HC, Ling X, He C (2009) JEM spotlight: environmental monitoring of airborne nanoparticles. J Environ Monit 11(10):1758–1773CrossRef
Zurück zum Zitat NIOSH (2009) Approaches to safe nanotechnology: managing the health and safety concerns with engineered nanomaterials. DHHS (NIOSH) Publication No. 2009-125 NIOSH (2009) Approaches to safe nanotechnology: managing the health and safety concerns with engineered nanomaterials. DHHS (NIOSH) Publication No. 2009-125
Zurück zum Zitat Oberdörster G (2000) Toxicology of ultrafine particles: in vivo studies. Phil Trans R Soc Lond A 358(1775):2719–2740CrossRef Oberdörster G (2000) Toxicology of ultrafine particles: in vivo studies. Phil Trans R Soc Lond A 358(1775):2719–2740CrossRef
Zurück zum Zitat OECD (2009) Emission assessment for identification of sources and release of airborne manufactured nanomaterials in the workplace: compilation of existing guidance. OECD working party for manufactured nanomaterials (WPMN) No. 11 ENV/JM/MONO(2009) 16 OECD (2009) Emission assessment for identification of sources and release of airborne manufactured nanomaterials in the workplace: compilation of existing guidance. OECD working party for manufactured nanomaterials (WPMN) No. 11 ENV/JM/MONO(2009) 16
Zurück zum Zitat Ono-Ogasawara M, Serita F, Takaya M (2009) Distinguishing nanomaterial particles from background airborne particulate matter for quantitative exposure assessment. J Nanopart Res 11:1651–1659CrossRef Ono-Ogasawara M, Serita F, Takaya M (2009) Distinguishing nanomaterial particles from background airborne particulate matter for quantitative exposure assessment. J Nanopart Res 11:1651–1659CrossRef
Zurück zum Zitat Peters MT, Heitbrink WA, Evans DE, Slavin TJ, Maynard AD (2006) The mapping of fine and ultrafine particle concentrations in an engine machining and assembly facility. Ann Occup Hyg 50(3):249–257CrossRef Peters MT, Heitbrink WA, Evans DE, Slavin TJ, Maynard AD (2006) The mapping of fine and ultrafine particle concentrations in an engine machining and assembly facility. Ann Occup Hyg 50(3):249–257CrossRef
Zurück zum Zitat Ramachandran G, Paulsen D, Watts W, Kittelson D (2005) Mass, surface area and number metrics in diesel occupational exposure assessment. J Environ Monit 7(7):728–735CrossRef Ramachandran G, Paulsen D, Watts W, Kittelson D (2005) Mass, surface area and number metrics in diesel occupational exposure assessment. J Environ Monit 7(7):728–735CrossRef
Zurück zum Zitat Son JY, Lee JT, Kim KH, Jung K, Bell ML (2012) Characterization of fine particulate matter and associations between particulate chemical constituents and mortality in Seoul Korea. Environ Health Perspect 120(6):872–878. doi:10.1289/ehp.1104316 CrossRef Son JY, Lee JT, Kim KH, Jung K, Bell ML (2012) Characterization of fine particulate matter and associations between particulate chemical constituents and mortality in Seoul Korea. Environ Health Perspect 120(6):872–878. doi:10.​1289/​ehp.​1104316 CrossRef
Zurück zum Zitat Stephenson D, Seshadri G, Veranth JM (2003) Workplace exposure to submicron particle mass and number concentrations from manual arc welding of carbon steel. AIHA J 64(4):516–521CrossRef Stephenson D, Seshadri G, Veranth JM (2003) Workplace exposure to submicron particle mass and number concentrations from manual arc welding of carbon steel. AIHA J 64(4):516–521CrossRef
Zurück zum Zitat Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B (2006) Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 114(3):328–333CrossRef Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B (2006) Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 114(3):328–333CrossRef
Zurück zum Zitat Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K (2000) Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol 12(12):1113–1126CrossRef Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K (2000) Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol 12(12):1113–1126CrossRef
Zurück zum Zitat Zimmer AT, Biswas P (2001) Characterization aerosols resulting from arc welding processes. J Aerosol Sci 32:993–1008CrossRef Zimmer AT, Biswas P (2001) Characterization aerosols resulting from arc welding processes. J Aerosol Sci 32:993–1008CrossRef
Metadaten
Titel
Workplace exposure to nanoparticles from gas metal arc welding process
verfasst von
Meibian Zhang
Le Jian
Pingfan Bin
Mingluan Xing
Jianlin Lou
Liming Cong
Hua Zou
Publikationsdatum
01.11.2013
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 11/2013
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-2016-4

Weitere Artikel der Ausgabe 11/2013

Journal of Nanoparticle Research 11/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.