Skip to main content

2021 | OriginalPaper | Buchkapitel

WP-1 Reference Cases of Laminar and Turbulent Interactions

verfasst von : Jean-Paul Dussauge, Reynald Bur, Todd Davidson, Holger Babinsky, Matteo Bernardini, Sergio Pirozzoli, Pierre Dupont, Sébastien Piponniau, Lionel Larchevêque, Rogier Giepman, Ferry Schrijer, Bas van Oudheusden, Pavel Polivanov, Andrey Sidorenko, Damien Szubert, Marianna Braza, Ioannis Asproulias, Nikos Simiriotis, Jean-Baptiste Tô, Yannick Hoarau, Andrea Sansica, Neil Sandham

Erschienen in: Transition Location Effect on Shock Wave Boundary Layer Interaction

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to be able to judge the effectiveness of transition induction in WP-2, reference flow cases were planned in WP-1. There are two obvious reference cases—a fully laminar interaction and a fully turbulent interaction. Here it should be explained that the terms “laminar” and “turbulent” interaction refer to the boundary layer state at the beginning of interaction only. There are two basic configurations of shock wave boundary layer interaction and these are a part of the TFAST project. One is the normal shock wave, which typically appears at the transonic wing and on the turbine cascade. The characteristic incipient separation Mach number range is about M = 1.2 in the case of a laminar boundary layer and about M = 1.32 in the case of turbulent boundary layer. The second typical flow case is the oblique shock wave reflection. The most characteristic case in European research is connected to the 6th FP IP HISAC project concerning a supersonic business jet. The design speed of this airplane is M = 1.6. Therefore the TFAST consortium decided to use this Mach number as the basic case. Pressure disturbance at this Mach number is not very high and can be compared to the disturbance of the normal shock at the incipient separation Mach number mentioned earlier. As mentioned earlier, shock reflection at M = 1.6 may be related to incipient separation. Therefore two additional test cases were planned with different Mach numbers. ITAM conducted an M = 1.5 test case, and TUD an M = 1.7 test case. These partners have also previously made very specialized and successful contributions to the UFAST project.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T.S.C. Davidson, H. Babinsky, An investigation of interactions between normal shocks and transitional boundary layers—control ID 1889354. 44th AIAA Fluid Dyn. Conf., no. June, pp. 1–16 (2014) T.S.C. Davidson, H. Babinsky, An investigation of interactions between normal shocks and transitional boundary layers—control ID 1889354. 44th AIAA Fluid Dyn. Conf., no. June, pp. 1–16 (2014)
2.
Zurück zum Zitat S.P. Colliss, Vortical structures on three-dimensional shock control bumps (2014) S.P. Colliss, Vortical structures on three-dimensional shock control bumps (2014)
3.
Zurück zum Zitat N. Titchener, S. Colliss, H. Babinsky, On the calculation of boundary-layer parameters from discrete data. Exp. Fluids 56(8), 1–18 (2015)CrossRef N. Titchener, S. Colliss, H. Babinsky, On the calculation of boundary-layer parameters from discrete data. Exp. Fluids 56(8), 1–18 (2015)CrossRef
4.
Zurück zum Zitat C. Sun, M.E. Childsf, A Modified Wall Wake Velocity Profile for Turbulent Compressible Boundary Layers, no. June, pp. 7–9 (1973) C. Sun, M.E. Childsf, A Modified Wall Wake Velocity Profile for Turbulent Compressible Boundary Layers, no. June, pp. 7–9 (1973)
5.
Zurück zum Zitat T.B. Layer, Explicit Expression for the Smooth Wall Velocity Distribution in a Turbulent Boundary Layer, no. June, pp. 655–657 (1979) T.B. Layer, Explicit Expression for the Smooth Wall Velocity Distribution in a Turbulent Boundary Layer, no. June, pp. 655–657 (1979)
6.
Zurück zum Zitat T.S.C. Davidson, H. Babinsky, Influence of Boundary-Layer State on Development Downstream of Normal Shock Interactions, pp. 10–12 T.S.C. Davidson, H. Babinsky, Influence of Boundary-Layer State on Development Downstream of Normal Shock Interactions, pp. 10–12
7.
Zurück zum Zitat L.U. Schrader, L. Brandt, C. Mavriplis, D.S. Henningson, Receptivity to free-stream vorticity of flow past a flat plate with elliptic leading edge. J. Fluid Mech. 653, 245–271 (2010)CrossRef L.U. Schrader, L. Brandt, C. Mavriplis, D.S. Henningson, Receptivity to free-stream vorticity of flow past a flat plate with elliptic leading edge. J. Fluid Mech. 653, 245–271 (2010)CrossRef
8.
Zurück zum Zitat J. Ackeret, F. Feldmann, N. Rott, Investigations of compression shocks and boundary layers in gases moving at high speed, NACA Rep., no. 1113 (1947) J. Ackeret, F. Feldmann, N. Rott, Investigations of compression shocks and boundary layers in gases moving at high speed, NACA Rep., no. 1113 (1947)
9.
Zurück zum Zitat J.W. Kooi, Experiment on transonic shock wave boundary layer interaction, AGARD Flow Sep. (1975) J.W. Kooi, Experiment on transonic shock wave boundary layer interaction, AGARD Flow Sep. (1975)
10.
Zurück zum Zitat W.G. Sawyer, C.J. Long, A study of normal shock-wave turbulent boundary-layer interactions at mach numbers of 1.3, 1.4 and 1.5, Tech. Rep. 82099, NASA (1982) W.G. Sawyer, C.J. Long, A study of normal shock-wave turbulent boundary-layer interactions at mach numbers of 1.3, 1.4 and 1.5, Tech. Rep. 82099, NASA (1982)
11.
Zurück zum Zitat S. Pirozzoli, P. Orlandi, M. Bernardini, The fluid dynamics of rolling wheels at low Reynolds number. J. Fluid Mech. 706(July), 496–533 (2012)CrossRef S. Pirozzoli, P. Orlandi, M. Bernardini, The fluid dynamics of rolling wheels at low Reynolds number. J. Fluid Mech. 706(July), 496–533 (2012)CrossRef
12.
Zurück zum Zitat S. Pirozzoli, M. Bernardini, F. Grasso, Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J. Fluid Mech. 657, 361–393 (2010)CrossRef S. Pirozzoli, M. Bernardini, F. Grasso, Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J. Fluid Mech. 657, 361–393 (2010)CrossRef
13.
Zurück zum Zitat S. Pirozzoli, Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229(19), 7180–7190 (2010)MathSciNetCrossRef S. Pirozzoli, Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229(19), 7180–7190 (2010)MathSciNetCrossRef
14.
Zurück zum Zitat M. Bernardini, S. Pirozzoli, A general strategy for the optimization of Runge-Kutta schemes for wave propagation phenomena. J. Comput. Phys. 228(11), 4182–4199 (2009)CrossRef M. Bernardini, S. Pirozzoli, A general strategy for the optimization of Runge-Kutta schemes for wave propagation phenomena. J. Comput. Phys. 228(11), 4182–4199 (2009)CrossRef
15.
Zurück zum Zitat E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161(1), 35–60 (2000)MathSciNetCrossRef E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161(1), 35–60 (2000)MathSciNetCrossRef
16.
Zurück zum Zitat M.D. de Tullio, P. De Palma, G. Iaccarino, G. Pascazio, M. Napolitano, An immersed boundary method for compressible flows using local grid refinement. J. Comput. Phys. 225(2), 2098–2117 (2007)MathSciNetCrossRef M.D. de Tullio, P. De Palma, G. Iaccarino, G. Pascazio, M. Napolitano, An immersed boundary method for compressible flows using local grid refinement. J. Comput. Phys. 225(2), 2098–2117 (2007)MathSciNetCrossRef
17.
Zurück zum Zitat M. Alam, N.D. Sandham, Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 1–28 (2000)CrossRef M. Alam, N.D. Sandham, Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 1–28 (2000)CrossRef
18.
Zurück zum Zitat P.R. Spalart, M.K. Strelets, Mechanisms of transition and heat transfer in a separation bubble. J. Fluid Mech. 403, 329–349 (2000)CrossRef P.R. Spalart, M.K. Strelets, Mechanisms of transition and heat transfer in a separation bubble. J. Fluid Mech. 403, 329–349 (2000)CrossRef
19.
Zurück zum Zitat S. Pirozzoli, M. Bernardini, F. Grasso, Characterization of coherent vortical structures in a supersonic turbulent boundary layer. J. Fluid Mech. 613, pp. 205–231 (Oct. 2008) S. Pirozzoli, M. Bernardini, F. Grasso, Characterization of coherent vortical structures in a supersonic turbulent boundary layer. J. Fluid Mech. 613, pp. 205–231 (Oct. 2008)
20.
Zurück zum Zitat S. Pirozzoli, F. Grasso, Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25, Phys. Fluids 18(6) (2006) S. Pirozzoli, F. Grasso, Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25, Phys. Fluids 18(6) (2006)
21.
Zurück zum Zitat P. Moin, K. Mahesh, Direct numerical simulation: a tool in turbulence research, Annu. Rev. Fluid Mech. 30(1), pp. 539–578 (Jan. 1998) P. Moin, K. Mahesh, Direct numerical simulation: a tool in turbulence research, Annu. Rev. Fluid Mech. 30(1), pp. 539–578 (Jan. 1998)
22.
Zurück zum Zitat J. Delery, J.G. Marvin, Shock wave—boundary layer interactions (1986) J. Delery, J.G. Marvin, Shock wave—boundary layer interactions (1986)
23.
Zurück zum Zitat E. Katzer, On the lengthscales of laminar shock/boundary-layer interaction, 206 (1989) E. Katzer, On the lengthscales of laminar shock/boundary-layer interaction, 206 (1989)
24.
Zurück zum Zitat B.I. Greber, R.J. Hakkinen, L. Trilling, laminar boundary layer oblique shock wave interaction on flat and curved plates 1, 33, pp. 312–331 B.I. Greber, R.J. Hakkinen, L. Trilling, laminar boundary layer oblique shock wave interaction on flat and curved plates 1, 33, pp. 312–331
25.
Zurück zum Zitat R. Dp, B. Or, R. Jenson, Triple-deck solutions for viscous supersonic and l o w past corners hypersonic f, 89 (1978) R. Dp, B. Or, R. Jenson, Triple-deck solutions for viscous supersonic and l o w past corners hypersonic f, 89 (1978)
26.
Zurück zum Zitat D.R Chapman, D.M Kuehn, H.K Larson, Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition (1957) D.R Chapman, D.M Kuehn, H.K Larson, Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition (1957)
27.
Zurück zum Zitat R.H.M. Giepman, F.F.J. Schrijer, B.W. van Oudheusden, High-resolution PIV measurements of a transitional shock wave–boundary layer interaction. Exp. Fluids 56(6), 1–20 (2015)CrossRef R.H.M. Giepman, F.F.J. Schrijer, B.W. van Oudheusden, High-resolution PIV measurements of a transitional shock wave–boundary layer interaction. Exp. Fluids 56(6), 1–20 (2015)CrossRef
28.
Zurück zum Zitat R.H.M. Giepman, F.F.J. Schrijer, B.W. van Oudheusden, Infrared thermography measurements on a moving boundary-layer transition front in supersonic flow. AIAA J. 53(7), 2056–2061 (2015)CrossRef R.H.M. Giepman, F.F.J. Schrijer, B.W. van Oudheusden, Infrared thermography measurements on a moving boundary-layer transition front in supersonic flow. AIAA J. 53(7), 2056–2061 (2015)CrossRef
29.
Zurück zum Zitat S. Dhawan, R. Narasimha, Some properties of boundary-layer flow during the transition from laminar to turbulent motion. J. Fluid Mech. 3(1951), 418–453 (1958)CrossRef S. Dhawan, R. Narasimha, Some properties of boundary-layer flow during the transition from laminar to turbulent motion. J. Fluid Mech. 3(1951), 418–453 (1958)CrossRef
30.
Zurück zum Zitat P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.K. Strelets, A. Travin, A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20(3), 181 (2006)CrossRef P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.K. Strelets, A. Travin, A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20(3), 181 (2006)CrossRef
31.
Zurück zum Zitat P. Spalart, S. Allmaras, A one-equation turbulence model for aerodynamic flows. AIAA, 439 (1992) P. Spalart, S. Allmaras, A one-equation turbulence model for aerodynamic flows. AIAA, 439 (1992)
32.
Zurück zum Zitat F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, 32(8) (1994) F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, 32(8) (1994)
33.
Zurück zum Zitat K.-Y. Chien, Predictions of channel and boundary-layer flows with a low-reynolds-number turbulence model. AIAA J. 20(1), pp. 33–38 (Jan. 1982) K.-Y. Chien, Predictions of channel and boundary-layer flows with a low-reynolds-number turbulence model. AIAA J. 20(1), pp. 33–38 (Jan. 1982)
34.
Zurück zum Zitat R. Bourguet, M. Braza, G. Harran, R. El Akoury, Anisotropic organised eddy simulation for the prediction of non-equilibrium turbulent flows around bodies. J. Fluids Struct. 24(8), 1240–1251 (2008)CrossRef R. Bourguet, M. Braza, G. Harran, R. El Akoury, Anisotropic organised eddy simulation for the prediction of non-equilibrium turbulent flows around bodies. J. Fluids Struct. 24(8), 1240–1251 (2008)CrossRef
35.
Zurück zum Zitat D.M. Dawson, S.K. Lele, J. Bodart, Assessment of wall-modeled large eddy simulation for supersonic compression ramp flows. In 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, American Institute of Aeronautics and Astronautics (2013) D.M. Dawson, S.K. Lele, J. Bodart, Assessment of wall-modeled large eddy simulation for supersonic compression ramp flows. In 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, American Institute of Aeronautics and Astronautics (2013)
36.
Zurück zum Zitat S. Hickel, E. Touber, J. Bodart, J. Larsson, A parametrized non-equilibrium wall-model for large-eddy simulations (2015) S. Hickel, E. Touber, J. Bodart, J. Larsson, A parametrized non-equilibrium wall-model for large-eddy simulations (2015)
37.
Zurück zum Zitat M. Shur, P. Spalart, M. Strelets, A. Travin, A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)CrossRef M. Shur, P. Spalart, M. Strelets, A. Travin, A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)CrossRef
38.
Zurück zum Zitat E. Touber, N.D. Sandham, Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech. 671, 417–465 (2011)CrossRef E. Touber, N.D. Sandham, Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech. 671, 417–465 (2011)CrossRef
39.
Zurück zum Zitat L. Agostini, L. Larchevêque, P. Dupont, J. Debiève, J.-P. Dussauge, Zones of influence and shock motion in a shock/boundary-layer interaction. AIAA J. 50(6), 1377–1387 (2012)CrossRef L. Agostini, L. Larchevêque, P. Dupont, J. Debiève, J.-P. Dussauge, Zones of influence and shock motion in a shock/boundary-layer interaction. AIAA J. 50(6), 1377–1387 (2012)CrossRef
40.
Zurück zum Zitat P. Durbin, X. Wu, Transition Beneath Vortical Disturbances (2007) P. Durbin, X. Wu, Transition Beneath Vortical Disturbances (2007)
41.
Zurück zum Zitat L. Agostini, L. Larchevêque, P. Dupont, L. Agostini, L. Larchevêque, P. Dupont, Mechanism of shock unsteadiness in separated shock/boundary-layer interactions Mechanism of shock unsteadiness in separated shock/boundary-layer interactions, 126103 (2015) L. Agostini, L. Larchevêque, P. Dupont, L. Agostini, L. Larchevêque, P. Dupont, Mechanism of shock unsteadiness in separated shock/boundary-layer interactions Mechanism of shock unsteadiness in separated shock/boundary-layer interactions, 126103 (2015)
42.
Zurück zum Zitat J. Riou, E. Garnier, C. Basdevant, Compressibility effects on the vortical flow over a 65° sweep delta wing. Phys. Fluids 22(3), 2–13 (2010)CrossRef J. Riou, E. Garnier, C. Basdevant, Compressibility effects on the vortical flow over a 65° sweep delta wing. Phys. Fluids 22(3), 2–13 (2010)CrossRef
43.
Zurück zum Zitat E. Garnier, Stimulated Detached Eddy Simulation of three-dimensional shock/boundary layer interaction, pp. 479–486 (2009) E. Garnier, Stimulated Detached Eddy Simulation of three-dimensional shock/boundary layer interaction, pp. 479–486 (2009)
44.
Zurück zum Zitat P. Roe, Approximate riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), pp. 357–372 (Oct. 1981) P. Roe, Approximate riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), pp. 357–372 (Oct. 1981)
45.
Zurück zum Zitat F. Ducros et al., Large-eddy simulation of the shock/turbulence interaction, 549, pp. 517–549 (1999) F. Ducros et al., Large-eddy simulation of the shock/turbulence interaction, 549, pp. 517–549 (1999)
46.
Zurück zum Zitat E. Lenormand, P. Sagaut, Subgrid-scale models for large-eddy simulations of compressible wall bounded flows, 38(8) (2000) E. Lenormand, P. Sagaut, Subgrid-scale models for large-eddy simulations of compressible wall bounded flows, 38(8) (2000)
47.
Zurück zum Zitat C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice Hall PTR, Upper Saddle River, NJ, USA, 1971)MATH C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice Hall PTR, Upper Saddle River, NJ, USA, 1971)MATH
48.
Zurück zum Zitat R.J. Volino, M.P. Schultz, C.M. Pratt, Conditional sampling in a transitional boundary layer under high freestream turbulence conditions. J. Fluids Eng. 125(1), pp. 28–37 (Jan. 2003) R.J. Volino, M.P. Schultz, C.M. Pratt, Conditional sampling in a transitional boundary layer under high freestream turbulence conditions. J. Fluids Eng. 125(1), pp. 28–37 (Jan. 2003)
49.
Zurück zum Zitat S.P. Schneider, Improved methods for measuring laminar-turbulent intermittency in boundary layers. Exp. Fluids 18(5), 370–375 (1995)CrossRef S.P. Schneider, Improved methods for measuring laminar-turbulent intermittency in boundary layers. Exp. Fluids 18(5), 370–375 (1995)CrossRef
50.
Zurück zum Zitat H. Babinsky, J.K. Harvey, Shock Wave-Boundary-Layer Interactions (2011) H. Babinsky, J.K. Harvey, Shock Wave-Boundary-Layer Interactions (2011)
Metadaten
Titel
WP-1 Reference Cases of Laminar and Turbulent Interactions
verfasst von
Jean-Paul Dussauge
Reynald Bur
Todd Davidson
Holger Babinsky
Matteo Bernardini
Sergio Pirozzoli
Pierre Dupont
Sébastien Piponniau
Lionel Larchevêque
Rogier Giepman
Ferry Schrijer
Bas van Oudheusden
Pavel Polivanov
Andrey Sidorenko
Damien Szubert
Marianna Braza
Ioannis Asproulias
Nikos Simiriotis
Jean-Baptiste Tô
Yannick Hoarau
Andrea Sansica
Neil Sandham
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-47461-4_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.