Skip to main content
Erschienen in: Journal of Materials Science 17/2020

09.03.2020 | Energy materials

ZnO@ZIF-8 inverse opal structure photoanode for efficient CdS/CdSe co-sensitized quantum dot solar cells

verfasst von: Yuxuan Li, Shengze Xiao, Weixin Li, Xuan He, Wei Fang, Hui Chen, Jing Ge, Lei Zhao

Erschienen in: Journal of Materials Science | Ausgabe 17/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Photoanodes in quantum-dot-sensitized solar cells are essential to the process of light collection and charge transfer. In this paper, three-dimensional inverse opal (ZnO@ZIF-8 3D IO) photoanode is fabricated via a self-assembled opal template method. The synthesized photoanode has completely connected pores with extended diameter, thus promoting the permeability of QDs and electrolyte. Meanwhile, the light trapping ability and charge transfer process can be enhanced due to the slow photon and multi-scattering effect of the regularly interconnected macroporous array structure. ZIF-8 shell coated on the surface of ZnO IO not only provides high porosity but also serves as a protective passivation layer to reduce the carriers recombination occurred at the interfacial. In order to investigate the charge transport mechanism of ZnO @ ZIF-8 IO, cascaded CdS/CdSe quantum dots were used as sensitizers. Benefiting from the IO structure and ZIF-8 modification, the photoelectric conversion efficiency of solar cells based on ZnO@ZIF-8 IO can reach 1.75% (1.71 ± 0.04%), almost twice of that of the solar cells based on ZnO IO photoanode (0.81 ± 0.05%).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Boro B, Gogoi B, Rajbongshi B, Ramchiary A (2018) Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: a review. Renew Sustain Energy Rev 81:2264–2270CrossRef Boro B, Gogoi B, Rajbongshi B, Ramchiary A (2018) Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: a review. Renew Sustain Energy Rev 81:2264–2270CrossRef
3.
Zurück zum Zitat Singh N, Salam Z, Subasri A, Sivasankar N, Subramania A (2018) Development of porous TiO2 nanofibers by solvosonication process for high performance quantum dot sensitized solar cell. Solar Energy Mater Solar Cells 179:417–426CrossRef Singh N, Salam Z, Subasri A, Sivasankar N, Subramania A (2018) Development of porous TiO2 nanofibers by solvosonication process for high performance quantum dot sensitized solar cell. Solar Energy Mater Solar Cells 179:417–426CrossRef
4.
Zurück zum Zitat Jiao S, Du J, Du Z, Long D, Jiang W, Pan Z, Li Y, Zhong X (2017) Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12. J Phys Chem Lett 8:559–564CrossRef Jiao S, Du J, Du Z, Long D, Jiang W, Pan Z, Li Y, Zhong X (2017) Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12. J Phys Chem Lett 8:559–564CrossRef
5.
Zurück zum Zitat Muthalif MPA, Sunesh CD, Choe Y (2018) Improved photovoltaic performance of quantum dot-sensitized solar cells based on highly electrocatalytic Ca-doped CuS counter electrodes. J Photochem Photobiol Chem 358:177–185CrossRef Muthalif MPA, Sunesh CD, Choe Y (2018) Improved photovoltaic performance of quantum dot-sensitized solar cells based on highly electrocatalytic Ca-doped CuS counter electrodes. J Photochem Photobiol Chem 358:177–185CrossRef
7.
Zurück zum Zitat Margraf JT, Ruland A, Sgobba V, Guldi DM, Clark T (2013) Quantum-dot-sensitized solar cells: understanding linker molecules through theory and experiment. Langmuir 29:2434–2438CrossRef Margraf JT, Ruland A, Sgobba V, Guldi DM, Clark T (2013) Quantum-dot-sensitized solar cells: understanding linker molecules through theory and experiment. Langmuir 29:2434–2438CrossRef
8.
Zurück zum Zitat Wang X, Ran L, Dong L, Dong Y, Wang C, Xiong Y (2016) Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO2 bowl nanoarrays. Nano Energy 24:87–93CrossRef Wang X, Ran L, Dong L, Dong Y, Wang C, Xiong Y (2016) Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO2 bowl nanoarrays. Nano Energy 24:87–93CrossRef
9.
Zurück zum Zitat Wang W, Dong J, Ye X, Li Y, Ma Y, Qi L (2016) Heterostructured TiO2 Nanorod@Nanobowl arrays for efficient photoelectrochemical water splitting. Small 12:1469–1478CrossRef Wang W, Dong J, Ye X, Li Y, Ma Y, Qi L (2016) Heterostructured TiO2 Nanorod@Nanobowl arrays for efficient photoelectrochemical water splitting. Small 12:1469–1478CrossRef
10.
Zurück zum Zitat Mehmood U, Harrabi K, Hussein IA, Ahmed S (2017) Enhanced photovoltaic performance of dye-sensitized solar cells using TiO2-graphene microplatelets hybrid photoanode. IEEE J Photovolt 6:196–201CrossRef Mehmood U, Harrabi K, Hussein IA, Ahmed S (2017) Enhanced photovoltaic performance of dye-sensitized solar cells using TiO2-graphene microplatelets hybrid photoanode. IEEE J Photovolt 6:196–201CrossRef
11.
Zurück zum Zitat Li Y, Li W, Zhao L, Ge J, He X, Fang W, Chen H (2019) Constructing micro-flower modified porous TiO2 photoanode for efficient quantum dots sensitized solar cells. J Photochem Photobiol Chem 375:77–84CrossRef Li Y, Li W, Zhao L, Ge J, He X, Fang W, Chen H (2019) Constructing micro-flower modified porous TiO2 photoanode for efficient quantum dots sensitized solar cells. J Photochem Photobiol Chem 375:77–84CrossRef
14.
Zurück zum Zitat Zhu Y, Tong X, Song H, Wang Y, Qiao Z, Qiu D, Huang J, Lu Z (2018) CsPbBr 3 perovskite quantum dots/ZnO inverse opal electrodes: photoelectrochemical sensing for dihydronicotinamide adenine dinucleotide under visible irradiation. Dalton Trans 47:10057–10062CrossRef Zhu Y, Tong X, Song H, Wang Y, Qiao Z, Qiu D, Huang J, Lu Z (2018) CsPbBr 3 perovskite quantum dots/ZnO inverse opal electrodes: photoelectrochemical sensing for dihydronicotinamide adenine dinucleotide under visible irradiation. Dalton Trans 47:10057–10062CrossRef
15.
16.
Zurück zum Zitat Eftekhari E, Broisson P, Nikhil A, Wu Z, Cole IS, Li X, Zhao D, Li Q (2017) Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency. J Mater Chem A 5:12803–12810CrossRef Eftekhari E, Broisson P, Nikhil A, Wu Z, Cole IS, Li X, Zhao D, Li Q (2017) Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency. J Mater Chem A 5:12803–12810CrossRef
17.
Zurück zum Zitat Liu J, Yao M, Shen L (2019) Third generation photovoltaic cells based on photonic crystals. J Mater Chem C 7:3121–3145CrossRef Liu J, Yao M, Shen L (2019) Third generation photovoltaic cells based on photonic crystals. J Mater Chem C 7:3121–3145CrossRef
20.
Zurück zum Zitat Lin X, Aumaitre C, Kervella Y, Lapertot G, Rodríguez-Seco C, Palomares E, Demadrille R, Reiss P (2018) Increasing the efficiency of organic dye-sensitized solar cells over 10.3% using locally ordered inverse opal nanostructures in the photoelectrode. Adv Funct Mater 28:1706291. https://doi.org/10.1002/adfm.201706291 CrossRef Lin X, Aumaitre C, Kervella Y, Lapertot G, Rodríguez-Seco C, Palomares E, Demadrille R, Reiss P (2018) Increasing the efficiency of organic dye-sensitized solar cells over 10.3% using locally ordered inverse opal nanostructures in the photoelectrode. Adv Funct Mater 28:1706291. https://​doi.​org/​10.​1002/​adfm.​201706291 CrossRef
22.
Zurück zum Zitat Qi L, Low ZX, Yi F, Leong S, Zhong Z, Yao J, Hapgood K, Wang H (2014) Direct conversion of two-dimensional ZIF-L film to porous ZnO nano-sheet film and its performance as photoanode in dye-sensitized solar cell. Microporous Mesoporous Mater 194:1–7CrossRef Qi L, Low ZX, Yi F, Leong S, Zhong Z, Yao J, Hapgood K, Wang H (2014) Direct conversion of two-dimensional ZIF-L film to porous ZnO nano-sheet film and its performance as photoanode in dye-sensitized solar cell. Microporous Mesoporous Mater 194:1–7CrossRef
23.
Zurück zum Zitat Kilic B, Turkdogan S (2017) Fabrication of dye-sensitized solar cells using graphene sandwiched 3D-ZnO nanostructures based photoanode and Pt-free pyrite counter electrode. Mater Lett 193:195–198CrossRef Kilic B, Turkdogan S (2017) Fabrication of dye-sensitized solar cells using graphene sandwiched 3D-ZnO nanostructures based photoanode and Pt-free pyrite counter electrode. Mater Lett 193:195–198CrossRef
24.
Zurück zum Zitat Raj CJ, Karthick SN, Park S, Hemalatha KV, Kim SK, Prabakar K, Kim HJ (2014) Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell. J Power Sources 248:439–446CrossRef Raj CJ, Karthick SN, Park S, Hemalatha KV, Kim SK, Prabakar K, Kim HJ (2014) Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell. J Power Sources 248:439–446CrossRef
25.
Zurück zum Zitat Li S, Zhang P, Chen H, Wang Y, Liu D, Wu J, Sarvari H, Chen ZD (2017) Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods. J Power Sources 342:990–997CrossRef Li S, Zhang P, Chen H, Wang Y, Liu D, Wu J, Sarvari H, Chen ZD (2017) Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods. J Power Sources 342:990–997CrossRef
26.
Zurück zum Zitat Feng HL, Wu WQ, Rao HS, Li LB, Kuang DB, Su CY (2015) Three-dimensional hyperbranched TiO2/ZnO heterostructured arrays for efficient quantum dot-sensitized solar cells. J Mater Chem A 3:14826–14832CrossRef Feng HL, Wu WQ, Rao HS, Li LB, Kuang DB, Su CY (2015) Three-dimensional hyperbranched TiO2/ZnO heterostructured arrays for efficient quantum dot-sensitized solar cells. J Mater Chem A 3:14826–14832CrossRef
27.
Zurück zum Zitat Li Y, Pang A, Wang C, Wei M (2011) Metal-organic frameworks: promising materials for improving the open circuit voltage of dye-sensitized solar cells. J Mater Chem 21:17259–17264CrossRef Li Y, Pang A, Wang C, Wei M (2011) Metal-organic frameworks: promising materials for improving the open circuit voltage of dye-sensitized solar cells. J Mater Chem 21:17259–17264CrossRef
28.
Zurück zum Zitat Chung HY, Lin CH, Prabu S, Wang HW (2018) Perovskite solar cells using TiO2 layers coated with metal-organic framework material ZIF-8. J Chin Chem Soc 65:1476–1481CrossRef Chung HY, Lin CH, Prabu S, Wang HW (2018) Perovskite solar cells using TiO2 layers coated with metal-organic framework material ZIF-8. J Chin Chem Soc 65:1476–1481CrossRef
29.
Zurück zum Zitat Gu A, Xiang W, Wang T, Gu S, Zhao X (2017) Enhance photovoltaic performance of tris(2,2′-bipyridine) cobalt(II)/(III) based dye-sensitized solar cells via modifying TiO2 surface with metal-organic frameworks. Sol Energy 147:126–132CrossRef Gu A, Xiang W, Wang T, Gu S, Zhao X (2017) Enhance photovoltaic performance of tris(2,2′-bipyridine) cobalt(II)/(III) based dye-sensitized solar cells via modifying TiO2 surface with metal-organic frameworks. Sol Energy 147:126–132CrossRef
30.
Zurück zum Zitat Zhang M, Shang Q, Wan Y, Cheng Q, Liao G, Pan Z (2019) Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation. Appl Catal B Environ 241:149–158CrossRef Zhang M, Shang Q, Wan Y, Cheng Q, Liao G, Pan Z (2019) Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation. Appl Catal B Environ 241:149–158CrossRef
32.
Zurück zum Zitat Li Y, Chen C, Sun X, Dou J, Wei M (2015) Metal-organic frameworks at interfaces in dye-sensitized solar cells. Chemsuschem 7:2469–2472CrossRef Li Y, Chen C, Sun X, Dou J, Wei M (2015) Metal-organic frameworks at interfaces in dye-sensitized solar cells. Chemsuschem 7:2469–2472CrossRef
33.
Zurück zum Zitat Shen K, Zhang L, Chen X, Liu L, Zhang D, Han Y, Chen J, Long J, Luque R, Li Y (2018) Ordered macro-microporous metal-organic framework single crystals. Science 359:206–210CrossRef Shen K, Zhang L, Chen X, Liu L, Zhang D, Han Y, Chen J, Long J, Luque R, Li Y (2018) Ordered macro-microporous metal-organic framework single crystals. Science 359:206–210CrossRef
34.
Zurück zum Zitat Karuturi SK, Liu L, Su LT, Chutinan A, Kherani NP, Chan TK, Osipowicz T, Yoong Tok AI (2011) Gradient inverse opal photonic crystals via spatially controlled template replication of self-assembled opals. Nanoscale 3:4951–4954CrossRef Karuturi SK, Liu L, Su LT, Chutinan A, Kherani NP, Chan TK, Osipowicz T, Yoong Tok AI (2011) Gradient inverse opal photonic crystals via spatially controlled template replication of self-assembled opals. Nanoscale 3:4951–4954CrossRef
35.
Zurück zum Zitat Tsai CW, Langner EHG (2016) The effect of synthesis temperature on the particle size of nano-ZIF-8. Microporous Mesoporous Mater 221:8–13CrossRef Tsai CW, Langner EHG (2016) The effect of synthesis temperature on the particle size of nano-ZIF-8. Microporous Mesoporous Mater 221:8–13CrossRef
36.
Zurück zum Zitat Ge J, Li W, Zhao L, Li Y, He X, Fang W, Chen H, Zhang F (2019) Constructing cellular network TiO2 photoanode for simultaneous regulation of charge transport and light harvesting properties of quantum dots sensitized solar cells. Ceram Int 45:3715–3722CrossRef Ge J, Li W, Zhao L, Li Y, He X, Fang W, Chen H, Zhang F (2019) Constructing cellular network TiO2 photoanode for simultaneous regulation of charge transport and light harvesting properties of quantum dots sensitized solar cells. Ceram Int 45:3715–3722CrossRef
37.
Zurück zum Zitat Wang G, Wei H, Shi J, Xu Y, Wu H, Luo Y, Li D, Meng Q (2017) Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects. Nano Energy 35:17–25CrossRef Wang G, Wei H, Shi J, Xu Y, Wu H, Luo Y, Li D, Meng Q (2017) Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects. Nano Energy 35:17–25CrossRef
39.
Zurück zum Zitat Lee L (2007) Flat-band potential of a semiconductor: using the Mott–Schottky equation. J Chem Educ 84:685–688CrossRef Lee L (2007) Flat-band potential of a semiconductor: using the Mott–Schottky equation. J Chem Educ 84:685–688CrossRef
40.
Zurück zum Zitat Hwang I, Yong K (2015) Counter electrodes for quantum-dot-sensitized solar cells. Chemelectrochem 2:634–653CrossRef Hwang I, Yong K (2015) Counter electrodes for quantum-dot-sensitized solar cells. Chemelectrochem 2:634–653CrossRef
41.
Zurück zum Zitat Wu M, Lin X, Wang Y, Ma T (2015) Counter electrode materials combined with redox couples in dye- and quantum dot-sensitized solar cells. J Mater Chem A 3:19638–19656CrossRef Wu M, Lin X, Wang Y, Ma T (2015) Counter electrode materials combined with redox couples in dye- and quantum dot-sensitized solar cells. J Mater Chem A 3:19638–19656CrossRef
42.
Zurück zum Zitat Du J, Du Z, Hu JS, Pan Z, Shen Q, Sun J, Long D, Dong H, Sun L, Zhong X (2016) Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 116%. J Am Chem Soc 138:4201–4209CrossRef Du J, Du Z, Hu JS, Pan Z, Shen Q, Sun J, Long D, Dong H, Sun L, Zhong X (2016) Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 116%. J Am Chem Soc 138:4201–4209CrossRef
Metadaten
Titel
ZnO@ZIF-8 inverse opal structure photoanode for efficient CdS/CdSe co-sensitized quantum dot solar cells
verfasst von
Yuxuan Li
Shengze Xiao
Weixin Li
Xuan He
Wei Fang
Hui Chen
Jing Ge
Lei Zhao
Publikationsdatum
09.03.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04534-5

Weitere Artikel der Ausgabe 17/2020

Journal of Materials Science 17/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.