Skip to main content
Erschienen in: Electrical Engineering 6/2021

13.03.2021 | Original Paper

3-D nonlinear magnetic field analysis with a novel adaptive finite element method

verfasst von: Yunpeng Zhang, Dingguo Shao, Xinsheng Yang, Weinong Fu

Erschienen in: Electrical Engineering | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, an adaptive degrees-of-freedom finite element method is extended to three-dimensional (3-D) nonlinear magnetic field analysis. The error distribution of the discrete solution changes along with the iterative process, and mesh coarsening or other operations with the same effect is needed to keep the scale of the problem small. In this proposed adaptive method, dispensable degrees of freedom (DoFs) are eliminated from the unknown list by constraining them with supplementary interpolation functions, which are formulated with master DoFs. Compared with mesh coarsening, the administration of DoFs and geometric data are no longer required, while the topology of the mesh is maintained. To extend to 3-D problems, a novel constraint, which produces accurate coefficients for an alterable number of master DoFs, is presented. The constraint is integrated into the element algebraic equation, followed by a conventional assembly. Other techniques for the adaptive algorithm are also included in this method. Several numerical examples are tested to showcase the effectiveness of this method in 3-D problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cendes ZJ, Shenton DN (1985) Adaptive mesh refinement in the finite-element computation of magnetic-fields. IEEE Trans Magn 21(5):1811–1816CrossRef Cendes ZJ, Shenton DN (1985) Adaptive mesh refinement in the finite-element computation of magnetic-fields. IEEE Trans Magn 21(5):1811–1816CrossRef
2.
Zurück zum Zitat Ilic MM, Ilic AZ, Notaros BM (2005) Efficient large-domain 2-D FEM solution of arbitrary waveguides using p-refinement on generalized quadrilaterals. IEEE Trans Microwave Theory Tech 53(4):1377–1383CrossRef Ilic MM, Ilic AZ, Notaros BM (2005) Efficient large-domain 2-D FEM solution of arbitrary waveguides using p-refinement on generalized quadrilaterals. IEEE Trans Microwave Theory Tech 53(4):1377–1383CrossRef
3.
Zurück zum Zitat Huang WZ (2001) Practical aspects of formulation and solution of moving mesh partial differential equations. J Comput Phys 171:753–775MathSciNetCrossRef Huang WZ (2001) Practical aspects of formulation and solution of moving mesh partial differential equations. J Comput Phys 171:753–775MathSciNetCrossRef
4.
Zurück zum Zitat Huang WZ, Ma JT, Russell RD (2008) A study of moving mesh PDE methods for numerical simulation of blowup in reaction diffusion equations. J Comput Phys 227:6532–6552MathSciNetCrossRef Huang WZ, Ma JT, Russell RD (2008) A study of moving mesh PDE methods for numerical simulation of blowup in reaction diffusion equations. J Comput Phys 227:6532–6552MathSciNetCrossRef
5.
Zurück zum Zitat Ladas D, Mazauric V, Meunier G et al (2008) An energy based approach of electromagnetism applied to adaptive meshing and error criteria. IEEE Trans Magn 44(6):1246–1249CrossRef Ladas D, Mazauric V, Meunier G et al (2008) An energy based approach of electromagnetism applied to adaptive meshing and error criteria. IEEE Trans Magn 44(6):1246–1249CrossRef
6.
Zurück zum Zitat Matsutomo S, Noguchi S, Yamashita H (2012) Adaptive mesh generation method utilizing magnetic flux lines in two-dimensional finite element analysis. IEEE Trans Magn 48(2):527–530CrossRef Matsutomo S, Noguchi S, Yamashita H (2012) Adaptive mesh generation method utilizing magnetic flux lines in two-dimensional finite element analysis. IEEE Trans Magn 48(2):527–530CrossRef
7.
Zurück zum Zitat Schmidt A, Siebert KG (2004) Design of adaptive finite element software: the finite element toolbox Alberta, 1st edn. Springer, New YorkMATH Schmidt A, Siebert KG (2004) Design of adaptive finite element software: the finite element toolbox Alberta, 1st edn. Springer, New YorkMATH
8.
Zurück zum Zitat Zhao YP, Ho SL, Fu WN (2013) A novel adaptive mesh finite element method for nonlinear magnetic field analysis. IEEE Trans Magn 49(5):1777–1780CrossRef Zhao YP, Ho SL, Fu WN (2013) A novel adaptive mesh finite element method for nonlinear magnetic field analysis. IEEE Trans Magn 49(5):1777–1780CrossRef
9.
Zurück zum Zitat Zhao YP, Ho SL, Fu WN (2013) An adaptive degrees-of-freedom finite-element method for transient magnetic field analysis. IEEE Trans Magn 49(12):5724–5729CrossRef Zhao YP, Ho SL, Fu WN (2013) An adaptive degrees-of-freedom finite-element method for transient magnetic field analysis. IEEE Trans Magn 49(12):5724–5729CrossRef
10.
Zurück zum Zitat Azocar D, Elgueta M, Rivara MC (2010) Automatic LEFM crack propagation method based on local Lepp-Delaunay mesh refinement. Adv Eng Softw 41:111–119CrossRef Azocar D, Elgueta M, Rivara MC (2010) Automatic LEFM crack propagation method based on local Lepp-Delaunay mesh refinement. Adv Eng Softw 41:111–119CrossRef
11.
Zurück zum Zitat Wicke M, Botsch M, Gross M (2007) A finite element method on convex polyhedral. Comput Gr Forum 26(3):355–364CrossRef Wicke M, Botsch M, Gross M (2007) A finite element method on convex polyhedral. Comput Gr Forum 26(3):355–364CrossRef
12.
Zurück zum Zitat Kossaczky I (1994) A recursive approach to local mesh refinement in 2 and 3 dimensions. J Comput Appl Math 55(3):275–288MathSciNetCrossRef Kossaczky I (1994) A recursive approach to local mesh refinement in 2 and 3 dimensions. J Comput Appl Math 55(3):275–288MathSciNetCrossRef
13.
Zurück zum Zitat Bíró O, Preis K, Richter KR (1996) On the use of the magnetic vector potential in the nodal and edge finite element analysis of 3D magnetostatic problems. IEEE Trans Magn 32(3):651–654CrossRef Bíró O, Preis K, Richter KR (1996) On the use of the magnetic vector potential in the nodal and edge finite element analysis of 3D magnetostatic problems. IEEE Trans Magn 32(3):651–654CrossRef
14.
Zurück zum Zitat Yamazaki K, Watari S, Saeki T, Sugiura Y (2008) Adaptive finite element meshing at each iterative calculation for electromagnetic field analysis of rotating machines. Electr Eng Jpn 164(3):78–91CrossRef Yamazaki K, Watari S, Saeki T, Sugiura Y (2008) Adaptive finite element meshing at each iterative calculation for electromagnetic field analysis of rotating machines. Electr Eng Jpn 164(3):78–91CrossRef
16.
Zurück zum Zitat Fu WN, Ho SL (2010) Elimination of nonphysical solutions and implementation of adaptive step size algorithm in time-stepping finite-element method for magnetic field-circuit-motion coupled problems. IEEE Trans Magn 46(1):29–38CrossRef Fu WN, Ho SL (2010) Elimination of nonphysical solutions and implementation of adaptive step size algorithm in time-stepping finite-element method for magnetic field-circuit-motion coupled problems. IEEE Trans Magn 46(1):29–38CrossRef
17.
Zurück zum Zitat Zhao YP, Fu WN (2017) A novel formulation with coulomb gauge for 3-D magnetostatic problems using edge elements. IEEE Trans Magn 53(6):1–4 Zhao YP, Fu WN (2017) A novel formulation with coulomb gauge for 3-D magnetostatic problems using edge elements. IEEE Trans Magn 53(6):1–4
19.
Zurück zum Zitat Bíró O (1993) Solution of TEAM benchmark problem #20 (3-D static force problem). In: Proceedings of 4th international TEAM workshop, Miami, pp 23–25 Bíró O (1993) Solution of TEAM benchmark problem #20 (3-D static force problem). In: Proceedings of 4th international TEAM workshop, Miami, pp 23–25
20.
Zurück zum Zitat Coulomb JL (1983) A methodology for the determination of global electromechanical quantities from a finite-element analysis and its application to the evaluation of magnetic forces, torques and stiffness. IEEE Trans Magn 19(6):2514–2519CrossRef Coulomb JL (1983) A methodology for the determination of global electromechanical quantities from a finite-element analysis and its application to the evaluation of magnetic forces, torques and stiffness. IEEE Trans Magn 19(6):2514–2519CrossRef
21.
Zurück zum Zitat Takahashi N, Nakata T, Morishige H (1995) Summary of results for problem 20 (3-D static force problem). COMPEL-Int J Comput Math Electr Electron Eng 14(2–3):57–75CrossRef Takahashi N, Nakata T, Morishige H (1995) Summary of results for problem 20 (3-D static force problem). COMPEL-Int J Comput Math Electr Electron Eng 14(2–3):57–75CrossRef
Metadaten
Titel
3-D nonlinear magnetic field analysis with a novel adaptive finite element method
verfasst von
Yunpeng Zhang
Dingguo Shao
Xinsheng Yang
Weinong Fu
Publikationsdatum
13.03.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 6/2021
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-021-01236-2

Weitere Artikel der Ausgabe 6/2021

Electrical Engineering 6/2021 Zur Ausgabe

Neuer Inhalt