Skip to main content
Erschienen in: Microsystem Technologies 10/2018

09.02.2018 | Technical Paper

3D printing of electrically conductive hybrid organic–inorganic composite materials

verfasst von: Shreyas Shah, MD Nahin Islam Shiblee, Julkarnyne M. Habibur Rahman, Samiul Basher, Sajjad Husain Mir, Masaru Kawakami, Hidemitsu Furukawa, Ajit Khosla

Erschienen in: Microsystem Technologies | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present preparation, characterization, and 3D printing of electrically conductive acrylonitrile butadiene styrene (ABS) polymer. The conducting ABS prepared by doping carbon fibers (150 μm in length) at 200 °C by using a thermo-plasto mill, with different weight percentage (10–60 wt%) of carbon fibers in ABS polymer matrix. The conductivity was measured by four-point probe that determines percolation threshold occurs at 15 wt%. Conductivity of 0.067 S/m was observed at 50 wt%. Melt extrusion technique was employed in order to fabricate cylindrical filament with a diameter of 1.75 mm. A standard fused deposition modeling type printer (Makerbot) was used to print the developed filament. The developed ABS electrically conductive composite can be potentially used for various applications, such as 3D printing of wires, circuits, sensors, resistors, heaters, robotics, MEMS and active microfluidics devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bassoli E, Gatto A, Iuliano L, Violante MG (2007) 3D printing technique applied to rapid casting. Rapid Prototyp J 13:148–155CrossRef Bassoli E, Gatto A, Iuliano L, Violante MG (2007) 3D printing technique applied to rapid casting. Rapid Prototyp J 13:148–155CrossRef
Zurück zum Zitat Chou K-S, Huang K-C, Shih Z-H (2005) Effect of mixing process onelectromagnetic interference shielding effectiveness of nickel/acrylonitrile-butadiene-styrene composites. J Appl Polym Sci 97:128–135CrossRef Chou K-S, Huang K-C, Shih Z-H (2005) Effect of mixing process onelectromagnetic interference shielding effectiveness of nickel/acrylonitrile-butadiene-styrene composites. J Appl Polym Sci 97:128–135CrossRef
Zurück zum Zitat Chung D, Khosla A, Seyfollahi S, Gray BL, Parameswaran A, Ramaseshan R, Kohli K (2011) Embedded process for flexible conductive electrodes for applications in tissue electrical impedance scanning (EIS). In: Sensors, 2011 IEEE, IEEE, pp 1893–1896 Chung D, Khosla A, Seyfollahi S, Gray BL, Parameswaran A, Ramaseshan R, Kohli K (2011) Embedded process for flexible conductive electrodes for applications in tissue electrical impedance scanning (EIS). In: Sensors, 2011 IEEE, IEEE, pp 1893–1896
Zurück zum Zitat Francis V, Jain PK (2016) Experimental investigations on fused deposition modelling of polymer-layered silicate nanocomposite. Virtual Phys Prototyp 11:109–121CrossRef Francis V, Jain PK (2016) Experimental investigations on fused deposition modelling of polymer-layered silicate nanocomposite. Virtual Phys Prototyp 11:109–121CrossRef
Zurück zum Zitat Gray BL, Khosla A (2010) Microfabrication and applications of nanoparticle doped conductive polymers. Nanoelectron Nanowires Mol Electron Nanodevices 227 Gray BL, Khosla A (2010) Microfabrication and applications of nanoparticle doped conductive polymers. Nanoelectron Nanowires Mol Electron Nanodevices 227
Zurück zum Zitat Khosla A (2011) Micropatternable multifunctional nanocomposite polymers for flexible soft MEMS applications (Doctoral Dissertation, Applied Science: School of Engineering Science). http://summit.sfu.ca/item/12017. Accessed 15 Jan 2018 Khosla A (2011) Micropatternable multifunctional nanocomposite polymers for flexible soft MEMS applications (Doctoral Dissertation, Applied Science: School of Engineering Science). http://​summit.​sfu.​ca/​item/​12017. Accessed 15 Jan 2018
Zurück zum Zitat Khosla A, Gray BL (2012) New technologies for large-scale micropatterning of functional nanocomposite polymers. In: Proceedings of the SPIE 8344, nanosensors, biosensors, and info-tech sensors and systems 2012, 83440W. https://doi.org/10.1117/12.915178 Khosla A, Gray BL (2012) New technologies for large-scale micropatterning of functional nanocomposite polymers. In: Proceedings of the SPIE 8344, nanosensors, biosensors, and info-tech sensors and systems 2012, 83440W. https://​doi.​org/​10.​1117/​12.​915178
Zurück zum Zitat Khosla A, Patel C (2016) Microfabrication and characterization of UV micropatternable, electrically conducting polyaniline photoresist blends for MEMS applications. Microsyst Technol 22(2):371–378CrossRef Khosla A, Patel C (2016) Microfabrication and characterization of UV micropatternable, electrically conducting polyaniline photoresist blends for MEMS applications. Microsyst Technol 22(2):371–378CrossRef
Zurück zum Zitat Khosla A, Korčok JL, Gray BL, Leznoff DB, Herchenroeder JW, Miller D, Chen Z (2010) Fabrication and testing of integrated permanent micromagnets for microfluidic systems. In: Proceedings of SPIE 7593, microfluidics, BioMEMS, and medical microsystems VIII, 759316. https://doi.org/10.1117/12.840942 Khosla A, Korčok JL, Gray BL, Leznoff DB, Herchenroeder JW, Miller D, Chen Z (2010) Fabrication and testing of integrated permanent micromagnets for microfluidic systems. In: Proceedings of SPIE 7593, microfluidics, BioMEMS, and medical microsystems VIII, 759316. https://​doi.​org/​10.​1117/​12.​840942
Zurück zum Zitat Khosla A, Hilbich D, Drewbrook C, Chung D, Gray BL (2011) Large scale micropatterning of multi-walled carbon nanotube/polydimethylsiloxane nanocomposite polymer on highly flexible 12 × 24 inch substrates. In: Proceedings SPIE 7926, micromachining and microfabrication process technology XVI, 79260L. https://doi.org/10.1117/12.876738 Khosla A, Hilbich D, Drewbrook C, Chung D, Gray BL (2011) Large scale micropatterning of multi-walled carbon nanotube/polydimethylsiloxane nanocomposite polymer on highly flexible 12 × 24 inch substrates. In: Proceedings SPIE 7926, micromachining and microfabrication process technology XVI, 79260L. https://​doi.​org/​10.​1117/​12.​876738
Zurück zum Zitat Krzysztof I (2010) Nanoelectronics: nanowires, molecular electronics, and nanodevices. McGraw Hill Professional, U.S.A Krzysztof I (2010) Nanoelectronics: nanowires, molecular electronics, and nanodevices. McGraw Hill Professional, U.S.A
Zurück zum Zitat Lee JY, Tan WS, An J, Chua CK, Tang CY, Fane AG, Chong TH (2016) The potential to enhance membrane module design with 3D printing technology. J Membr Sci 499:480–490CrossRef Lee JY, Tan WS, An J, Chua CK, Tang CY, Fane AG, Chong TH (2016) The potential to enhance membrane module design with 3D printing technology. J Membr Sci 499:480–490CrossRef
Zurück zum Zitat Li A, Khosla A, Drewbrook C, Gray BL (2011) Fabrication and testing of thermally responsive hydrogel-based actuators using polymer heater elements for flexible microvalves. In: Proceedings of SPIE 7929, microfluidics, BioMEMS, and medical microsystems IX, 79290G. https://doi.org/10.1117/12.873197 Li A, Khosla A, Drewbrook C, Gray BL (2011) Fabrication and testing of thermally responsive hydrogel-based actuators using polymer heater elements for flexible microvalves. In: Proceedings of SPIE 7929, microfluidics, BioMEMS, and medical microsystems IX, 79290G. https://​doi.​org/​10.​1117/​12.​873197
Zurück zum Zitat Ozhikandathil J, Khosla A, Packirisamy M (2015) Electrically conducting PDMS nanocomposite using in situ reduction of gold nanostructures and mechanical stimulation of carbon nanotubes and silver nanoparticles. ECS J Solid State Sci Technol 4(10):S3048–S3052. https://doi.org/10.1149/2.0091510jss CrossRef Ozhikandathil J, Khosla A, Packirisamy M (2015) Electrically conducting PDMS nanocomposite using in situ reduction of gold nanostructures and mechanical stimulation of carbon nanotubes and silver nanoparticles. ECS J Solid State Sci Technol 4(10):S3048–S3052. https://​doi.​org/​10.​1149/​2.​0091510jss CrossRef
Zurück zum Zitat Packirisamy M, Ozhikandathil J, Khosla A (2017) Methods for fabricating morphologically transformed nano-structures (mtns) and tunable nanocomposite polymer materials, and devices using such materials. US Patent Application No. 14/776,833, 17 Mar 2014 Packirisamy M, Ozhikandathil J, Khosla A (2017) Methods for fabricating morphologically transformed nano-structures (mtns) and tunable nanocomposite polymer materials, and devices using such materials. US Patent Application No. 14/776,833, 17 Mar 2014
Zurück zum Zitat Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos Part A Appl Sci Manuf 76:110–114CrossRef Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos Part A Appl Sci Manuf 76:110–114CrossRef
Zurück zum Zitat Ryder G, Ion B, Green G, Harrison D, Wood B (2002) Rapid design and manufacture tools in architecture. Autom Constr 11:279–290CrossRef Ryder G, Ion B, Green G, Harrison D, Wood B (2002) Rapid design and manufacture tools in architecture. Autom Constr 11:279–290CrossRef
Zurück zum Zitat Sandron S, Heery B, Gupta V, Collins DA, Nesterenko EP, Nesterenko PN, Talebi M, Beirne S, Thompson F, Wallace GG, Brabazon D, Regan F, Paull B (2014) Analyst 139:6343–6347CrossRef Sandron S, Heery B, Gupta V, Collins DA, Nesterenko EP, Nesterenko PN, Talebi M, Beirne S, Thompson F, Wallace GG, Brabazon D, Regan F, Paull B (2014) Analyst 139:6343–6347CrossRef
Zurück zum Zitat Sekhar PK et al (2017) A new low-temperature electrochemical hydrocarbon and NOx sensor. Sensors 17(12):2759CrossRef Sekhar PK et al (2017) A new low-temperature electrochemical hydrocarbon and NOx sensor. Sensors 17(12):2759CrossRef
Metadaten
Titel
3D printing of electrically conductive hybrid organic–inorganic composite materials
verfasst von
Shreyas Shah
MD Nahin Islam Shiblee
Julkarnyne M. Habibur Rahman
Samiul Basher
Sajjad Husain Mir
Masaru Kawakami
Hidemitsu Furukawa
Ajit Khosla
Publikationsdatum
09.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3781-x

Weitere Artikel der Ausgabe 10/2018

Microsystem Technologies 10/2018 Zur Ausgabe

Neuer Inhalt