Skip to main content
Erschienen in: Journal of Materials Science 8/2019

17.01.2019 | Materials for life sciences

3D printing of structural gradient soft actuators by variation of bioinspired architectures

verfasst von: Luquan Ren, Bingqian Li, Zhengyi Song, Qingping Liu, Lei Ren, Xueli Zhou

Erschienen in: Journal of Materials Science | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Soft actuators, which ensure the safety of robot–human interactions, extend the range of robotic operations to fragile and sensitive objects. Shape memory polymers are one of the building material for soft actuators due to their spontaneous shape memory properties under stimulation. However, the global, discontinuous and imprecise motion put significant limitations on their wide application. Recently, it has been demonstrated that by using motifs in nature, anisotropic, heterogeneous properties of soft actuators can be fabricated. Here, it is shown that soft actuators with local response and continuously varying shape memory properties can be realized through integrating bioinspired arranged building blocks (fibers). The modified 3D printing technique provides the pathway of assembling these fibers as designed. We have revealed the underlying mechanism of the formation of gradient shape memory properties. Simulations successfully demonstrate the feasibility of our approach to manipulate shape memory behaviors. The translation of nature’s design motifs offers synthetic soft actuators the opportunity towards unprecedented applications such as soft robot, drug carrier and other intelligent applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Liu Z, Meyers MA, Zhang Z, Ritchie RO (2017) Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications. Prog Mater Sci 88:467–498CrossRef Liu Z, Meyers MA, Zhang Z, Ritchie RO (2017) Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications. Prog Mater Sci 88:467–498CrossRef
2.
Zurück zum Zitat Studart AR (2013) Biological and bioinspired composites with spatially tunable heterogeneous architectures. Adv Funct Mater 23:4423–4436CrossRef Studart AR (2013) Biological and bioinspired composites with spatially tunable heterogeneous architectures. Adv Funct Mater 23:4423–4436CrossRef
3.
Zurück zum Zitat Murphy T (2010) Gradients of dentine exposure in human molar tooth attrition. Am J Phys Anthropol 17:179–186CrossRef Murphy T (2010) Gradients of dentine exposure in human molar tooth attrition. Am J Phys Anthropol 17:179–186CrossRef
4.
Zurück zum Zitat Miserez A, Schneberk T, Sun C, Zok FW, Waite JH (2008) The transition from stiff to compliant materials in squid beaks. Science 319:1816–1819CrossRef Miserez A, Schneberk T, Sun C, Zok FW, Waite JH (2008) The transition from stiff to compliant materials in squid beaks. Science 319:1816–1819CrossRef
5.
Zurück zum Zitat Chen Y, Wang L, Xue Y, Jiang L, Zheng Y (2013) Bioinspired tilt-angle fabricated structure gradient fibers: micro-drops fast transport in a long-distance. Sci Rep 3:2927CrossRef Chen Y, Wang L, Xue Y, Jiang L, Zheng Y (2013) Bioinspired tilt-angle fabricated structure gradient fibers: micro-drops fast transport in a long-distance. Sci Rep 3:2927CrossRef
6.
Zurück zum Zitat Bentov S, Zaslansky P, Alsawalmih A, Masic A, Fratzl P, Sagi A et al (2012) Enamel-like apatite crown covering amorphous mineral in a crayfish mandible. Nat Commun 3:839CrossRef Bentov S, Zaslansky P, Alsawalmih A, Masic A, Fratzl P, Sagi A et al (2012) Enamel-like apatite crown covering amorphous mineral in a crayfish mandible. Nat Commun 3:839CrossRef
7.
Zurück zum Zitat Elbaum R, Zaltzman L, Burgert I, Fratzl P (2007) The role of wheat awns in the seed dispersal unit. Science 316:884–886CrossRef Elbaum R, Zaltzman L, Burgert I, Fratzl P (2007) The role of wheat awns in the seed dispersal unit. Science 316:884–886CrossRef
8.
Zurück zum Zitat Dawson C, Vincent JFV, Rocca AM (1997) How pine cones open. Nature 390:668CrossRef Dawson C, Vincent JFV, Rocca AM (1997) How pine cones open. Nature 390:668CrossRef
9.
Zurück zum Zitat Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2766CrossRef Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2766CrossRef
10.
Zurück zum Zitat Eder M, Jungnikl K, Burgert I (2009) A close-up view of wood structure and properties across a growth ring of norway spruce. Trees 23:79–84CrossRef Eder M, Jungnikl K, Burgert I (2009) A close-up view of wood structure and properties across a growth ring of norway spruce. Trees 23:79–84CrossRef
11.
Zurück zum Zitat Tadayon M, Amini S, Masic A, Miserez A (2015) Saddle structures: the mantis shrimp saddle: a biological spring combining stiffness and flexibility. Adv Funct Mater 25:6429CrossRef Tadayon M, Amini S, Masic A, Miserez A (2015) Saddle structures: the mantis shrimp saddle: a biological spring combining stiffness and flexibility. Adv Funct Mater 25:6429CrossRef
12.
Zurück zum Zitat Miserez A, Weaver JC, Thurner PJ, Aizenberg J, Dauphin Y, Fratzl P, Morse DE, Zok FW (2008) Effects of laminate architecture on fracture resistance of sponge biosilica: lessons from nature. Adv Funct Mater 18:1241–1248CrossRef Miserez A, Weaver JC, Thurner PJ, Aizenberg J, Dauphin Y, Fratzl P, Morse DE, Zok FW (2008) Effects of laminate architecture on fracture resistance of sponge biosilica: lessons from nature. Adv Funct Mater 18:1241–1248CrossRef
14.
Zurück zum Zitat Zhang Y, Paris O, Terrill NJ, Gupta HS (2016) Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour. Sci Rep 6:26249CrossRef Zhang Y, Paris O, Terrill NJ, Gupta HS (2016) Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour. Sci Rep 6:26249CrossRef
15.
Zurück zum Zitat Raabe D, Sachs C, Romano P (2005) The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater 53:4281–4292CrossRef Raabe D, Sachs C, Romano P (2005) The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater 53:4281–4292CrossRef
16.
Zurück zum Zitat Watanabe T, Imamura Y, Hosaka Y, Ueda H, Takehana K (2007) Graded arrangement of collagen fibrils in the equine superficial digital flexor tendon. Connect Tissue Res 48:332–337CrossRef Watanabe T, Imamura Y, Hosaka Y, Ueda H, Takehana K (2007) Graded arrangement of collagen fibrils in the equine superficial digital flexor tendon. Connect Tissue Res 48:332–337CrossRef
17.
Zurück zum Zitat Elbaum R, Gorb S, Fratzl P (2008) Structures in the cell wall that enable hygroscopic movement of wheat awns. J Struct Biol 164:101–107CrossRef Elbaum R, Gorb S, Fratzl P (2008) Structures in the cell wall that enable hygroscopic movement of wheat awns. J Struct Biol 164:101–107CrossRef
18.
Zurück zum Zitat Studart AR, Erb RM (2014) Bioinspired materials that self-shape through programmed microstructures. Soft Matter 10:1284–1294CrossRef Studart AR, Erb RM (2014) Bioinspired materials that self-shape through programmed microstructures. Soft Matter 10:1284–1294CrossRef
19.
Zurück zum Zitat Yang Y, Chen Z, Song X, Zhang Z, Zhang J, Shung KK, Zhou Q, Chen Y (2017) Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3d printing. Adv Mater 29:1605750CrossRef Yang Y, Chen Z, Song X, Zhang Z, Zhang J, Shung KK, Zhou Q, Chen Y (2017) Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3d printing. Adv Mater 29:1605750CrossRef
20.
Zurück zum Zitat Collino RR, Ray TR, Fleming RC, Sasaki CH, Haj-Hariri H, Begley MR (2015) Acoustic field controlled patterning and assembly of anisotropic particles. EML 5:37–46 Collino RR, Ray TR, Fleming RC, Sasaki CH, Haj-Hariri H, Begley MR (2015) Acoustic field controlled patterning and assembly of anisotropic particles. EML 5:37–46
21.
Zurück zum Zitat Martin JJ, Fiore BE, Erb RM (2015) Designing bioinspired composite reinforcement architectures via 3d magnetic printing. Nat Commun 6:8641CrossRef Martin JJ, Fiore BE, Erb RM (2015) Designing bioinspired composite reinforcement architectures via 3d magnetic printing. Nat Commun 6:8641CrossRef
22.
Zurück zum Zitat Rudykh S, Boyce MC (2014) Transforming small localized loading into large rotational motion in soft anisotropically structured materials. Adv Eng Mater 16:1311–1317CrossRef Rudykh S, Boyce MC (2014) Transforming small localized loading into large rotational motion in soft anisotropically structured materials. Adv Eng Mater 16:1311–1317CrossRef
23.
Zurück zum Zitat Slesarenko V, Engelkemier S, Galich PI, Vladimirsky D, Klein G, Rudykh S (2018) Strategies to control performance of 3d-printed, cable-driven soft polymer actuators: from simple architectures to gripper prototype. Polymers 10:846CrossRef Slesarenko V, Engelkemier S, Galich PI, Vladimirsky D, Klein G, Rudykh S (2018) Strategies to control performance of 3d-printed, cable-driven soft polymer actuators: from simple architectures to gripper prototype. Polymers 10:846CrossRef
24.
Zurück zum Zitat Galich PI, Slesarenko V, Rudykh S (2016) Shear wave propagation in finitely deformed 3D fiber-reinforced composites. Int J Solids Struct 110–111:294–304 Galich PI, Slesarenko V, Rudykh S (2016) Shear wave propagation in finitely deformed 3D fiber-reinforced composites. Int J Solids Struct 110–111:294–304
25.
Zurück zum Zitat Bin S, Kim JG, Nam YY, Lee GH, Yu WR (2015) Mechanical analysis of carbon fiber shape memory polymer composites. In: World congress on advances in structural engineering and mechanics Bin S, Kim JG, Nam YY, Lee GH, Yu WR (2015) Mechanical analysis of carbon fiber shape memory polymer composites. In: World congress on advances in structural engineering and mechanics
26.
Zurück zum Zitat Ge Q, Luo X, Rodriguez ED, Zhang X, Mather PT, Dunn ML, Qi HJ (2012) Thermomechanical behavior of shape memory elastomeric composites. J Mech Phys Solids 60:67–83CrossRef Ge Q, Luo X, Rodriguez ED, Zhang X, Mather PT, Dunn ML, Qi HJ (2012) Thermomechanical behavior of shape memory elastomeric composites. J Mech Phys Solids 60:67–83CrossRef
27.
Zurück zum Zitat Kumar S, Reddy KVVS, Kumar A, Devi GR (2013) Development and characterization of polymer–ceramic continuous fiber reinforced functionally graded composites for aerospace application. Trends Cardiovasc Med 26:185–191 Kumar S, Reddy KVVS, Kumar A, Devi GR (2013) Development and characterization of polymer–ceramic continuous fiber reinforced functionally graded composites for aerospace application. Trends Cardiovasc Med 26:185–191
28.
Zurück zum Zitat Illeperuma WRK, Sun JY, Suo Z, Vlassak JJ (2014) Fiber-reinforced tough hydrogels. EML 1:90–96 Illeperuma WRK, Sun JY, Suo Z, Vlassak JJ (2014) Fiber-reinforced tough hydrogels. EML 1:90–96
29.
Zurück zum Zitat Erb RM, Sander JS, Grisch R, Studart AR (2013) Self-shaping composites with programmable bioinspired microstructures. Nat Commun 4:1712CrossRef Erb RM, Sander JS, Grisch R, Studart AR (2013) Self-shaping composites with programmable bioinspired microstructures. Nat Commun 4:1712CrossRef
30.
Zurück zum Zitat Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14:23–36CrossRef Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14:23–36CrossRef
31.
Zurück zum Zitat Naleway SE, Porter MM, Mckittrick J, Meyers MA (2015) Structural design elements in biological materials: application to bioinspiration. Adv Mater 27:5455–5476CrossRef Naleway SE, Porter MM, Mckittrick J, Meyers MA (2015) Structural design elements in biological materials: application to bioinspiration. Adv Mater 27:5455–5476CrossRef
32.
Zurück zum Zitat Mahajan C, Cormier D (2015) 3D printing of carbon fiber composites with preferentially aligned fibers. In: IIE annual conference. Proceedings Mahajan C, Cormier D (2015) 3D printing of carbon fiber composites with preferentially aligned fibers. In: IIE annual conference. Proceedings
33.
Zurück zum Zitat Ayres C, Bowlin GL, Henderson SC, Taylor L, Shultz J, Alexander J, Telemeco TA, Simpson DG (2006) Modulation of anisotropy in electrospun tissue-engineering scaffolds: analysis of fiber alignment by the fast fourier transform. Biomaterials 27:5524–5534CrossRef Ayres C, Bowlin GL, Henderson SC, Taylor L, Shultz J, Alexander J, Telemeco TA, Simpson DG (2006) Modulation of anisotropy in electrospun tissue-engineering scaffolds: analysis of fiber alignment by the fast fourier transform. Biomaterials 27:5524–5534CrossRef
34.
Zurück zum Zitat Ge Q, Serjouei A, Qi HJ, Dunn ML (2016) Thermomechanics of printed anisotropic shape memory elastomeric composites. Int J Solids Struct 102–103:186–199CrossRef Ge Q, Serjouei A, Qi HJ, Dunn ML (2016) Thermomechanics of printed anisotropic shape memory elastomeric composites. Int J Solids Struct 102–103:186–199CrossRef
35.
Zurück zum Zitat Debotton G, Hariton I, Socolsky EA (2016) Neo-Hookean fiber-reinforced composites in finite elasticity. J Mech Phys Solids 54:533–559CrossRef Debotton G, Hariton I, Socolsky EA (2016) Neo-Hookean fiber-reinforced composites in finite elasticity. J Mech Phys Solids 54:533–559CrossRef
36.
Zurück zum Zitat Idiart MI (2016) Modeling the macroscopic behavior of two-phase nonlinear composites by infinite-rank laminates. J Mech Phys Solids 56:2599–2617CrossRef Idiart MI (2016) Modeling the macroscopic behavior of two-phase nonlinear composites by infinite-rank laminates. J Mech Phys Solids 56:2599–2617CrossRef
Metadaten
Titel
3D printing of structural gradient soft actuators by variation of bioinspired architectures
verfasst von
Luquan Ren
Bingqian Li
Zhengyi Song
Qingping Liu
Lei Ren
Xueli Zhou
Publikationsdatum
17.01.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 8/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03344-8

Weitere Artikel der Ausgabe 8/2019

Journal of Materials Science 8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.