Skip to main content
Erschienen in: Pattern Analysis and Applications 3/2021

30.03.2021 | Theoretical advances

A 2D and 3D discrete bisector function based on annulus

verfasst von: Rita Zrour, Eric Andres, Sangbé Sidibe, Raphael Lenain, Gaelle Largeteau-Skapin

Erschienen in: Pattern Analysis and Applications | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The bisector function is an important tool for analyzing and filtering Euclidean skeletons. In this paper, we are proposing a new way to compute 2D and 3D discrete bisector function based on annuli. From a continuous point of view, a point that belongs to the medial axis is the center of a maximal ball that hits the background in more than one point. The maximal angle between those points is expected to be high for most of the object points and corresponds to the bisector angle. This logic is not really applicable in the discrete space since we may miss some background points that can lead to small bisector angles. In this work we use annuli to find the background points in order to compute the bisector angle. Our approach offers the possibility to change the thickness of the annulus at a given point and is thus flexible when computing skeletons. Our work can be extended to nD and we propose the nD algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Blum H (1967) A transformation for extracting new descriptors of shape. In: Models for the perception of speech and visual form, pp 362–380 Blum H (1967) A transformation for extracting new descriptors of shape. In: Models for the perception of speech and visual form, pp 362–380
2.
Zurück zum Zitat Sirin Y, Demirci MF (2016) 2D and 3D shape retrieval using skeleton filling rate. Multimedia Tools Appl 76:7823–7848CrossRef Sirin Y, Demirci MF (2016) 2D and 3D shape retrieval using skeleton filling rate. Multimedia Tools Appl 76:7823–7848CrossRef
3.
Zurück zum Zitat Xu Y, Mattikalli R, Khosla P (1992) Motion planning using medial axis. IFAC Proc Vol 25(28):135–140CrossRef Xu Y, Mattikalli R, Khosla P (1992) Motion planning using medial axis. IFAC Proc Vol 25(28):135–140CrossRef
4.
Zurück zum Zitat Le B, Hodgins J (2016) Real-time skeletal skinning with optimized centers of rotation. ACM Trans Graph 35(4):37:1–37:10CrossRef Le B, Hodgins J (2016) Real-time skeletal skinning with optimized centers of rotation. ACM Trans Graph 35(4):37:1–37:10CrossRef
5.
Zurück zum Zitat Fogg HJ, Armstrong CG, Robinson TT (2014) New techniques for enhanced medial axis based decompositions in 2-d. Procedia Eng 82:162–174CrossRef Fogg HJ, Armstrong CG, Robinson TT (2014) New techniques for enhanced medial axis based decompositions in 2-d. Procedia Eng 82:162–174CrossRef
6.
Zurück zum Zitat Farin G, Hoschek J, Kim M-S (2002) Handbook of computeraided geometric design, 1st Edition, North Holland IFIP Farin G, Hoschek J, Kim M-S (2002) Handbook of computeraided geometric design, 1st Edition, North Holland IFIP
7.
Zurück zum Zitat Chaussard J, Couprie M, Talbot H (2011) Robust skeletonization using the discrete \(\lambda\)-medial axis. Pattern Recogn Lett 32(9):1384–1394CrossRef Chaussard J, Couprie M, Talbot H (2011) Robust skeletonization using the discrete \(\lambda\)-medial axis. Pattern Recogn Lett 32(9):1384–1394CrossRef
8.
Zurück zum Zitat Brandt J, Algazi V (1992) Continuous skeleton computation by voronoi diagram. CVGIP: Image Understand 55:329–338CrossRef Brandt J, Algazi V (1992) Continuous skeleton computation by voronoi diagram. CVGIP: Image Understand 55:329–338CrossRef
9.
Zurück zum Zitat Näf M, Székely G, Kikinis R, Shenton M, Kübler O (1997) 3D voronoi skeletons and their usage for the characterization and recognition of 3D organ shape. Comput Vis Image Understand 66:147–161CrossRef Näf M, Székely G, Kikinis R, Shenton M, Kübler O (1997) 3D voronoi skeletons and their usage for the characterization and recognition of 3D organ shape. Comput Vis Image Understand 66:147–161CrossRef
10.
Zurück zum Zitat Borgefors G, Nyström I, Baja G (1999) Computing skeletons in three dimensions. Pattern Recogn 32:1225–1236CrossRef Borgefors G, Nyström I, Baja G (1999) Computing skeletons in three dimensions. Pattern Recogn 32:1225–1236CrossRef
11.
Zurück zum Zitat Bertrand G (1995) A parallel thinning algorithm for medial surfaces. Pattern Recogn Lett 16:979–986CrossRef Bertrand G (1995) A parallel thinning algorithm for medial surfaces. Pattern Recogn Lett 16:979–986CrossRef
12.
Zurück zum Zitat Saha PK, Borgefors G, Baja G (2016) A survey on skeletonization algorithms and their applications. Pattern Recogn Lett 76:3–12CrossRef Saha PK, Borgefors G, Baja G (2016) A survey on skeletonization algorithms and their applications. Pattern Recogn Lett 76:3–12CrossRef
13.
Zurück zum Zitat Lohou C, Bertrand G (2004) A 3D 12-subiteration thinning algorithm based on p-simple points. Discret Appl Math 139:171–195MathSciNetCrossRef Lohou C, Bertrand G (2004) A 3D 12-subiteration thinning algorithm based on p-simple points. Discret Appl Math 139:171–195MathSciNetCrossRef
14.
Zurück zum Zitat Németh G, Kardos P, Palágyi K (2011) Thinning combined with iteration-by-iteration smoothing for 3D binary images. Graph Models 73:335–345CrossRef Németh G, Kardos P, Palágyi K (2011) Thinning combined with iteration-by-iteration smoothing for 3D binary images. Graph Models 73:335–345CrossRef
15.
Zurück zum Zitat Saha PK, Chaudhuri B, Majumder DD (1997) A new shape preserving parallel thinning algorithm for 3D digital images. Pattern Recogn 30:1939–1955CrossRef Saha PK, Chaudhuri B, Majumder DD (1997) A new shape preserving parallel thinning algorithm for 3D digital images. Pattern Recogn 30:1939–1955CrossRef
16.
Zurück zum Zitat Arcelli C, Baja G (1985) A width-independent fast thinning algorithm. In: IEEE transactions on pattern analysis and machine intelligence PAMI-7 463–474 Arcelli C, Baja G (1985) A width-independent fast thinning algorithm. In: IEEE transactions on pattern analysis and machine intelligence PAMI-7 463–474
17.
Zurück zum Zitat Borgefors G, Nyström I, di Baja G (1996) Surface skeletonization of volume objects. In: Advances in structural and syntactical pattern recognition, Springer, Berlin, Heidelberg, pp 251–259 Borgefors G, Nyström I, di Baja G (1996) Surface skeletonization of volume objects. In: Advances in structural and syntactical pattern recognition, Springer, Berlin, Heidelberg, pp 251–259
18.
Zurück zum Zitat Attali D, di Baja G, Thiel E (1995) Pruning discrete and semicontinuous skeletons. In: Image analysis and processing. Springer, Berlin, Heidelberg, pp 488–493 Attali D, di Baja G, Thiel E (1995) Pruning discrete and semicontinuous skeletons. In: Image analysis and processing. Springer, Berlin, Heidelberg, pp 488–493
19.
Zurück zum Zitat Attali D, Lachaud J (2001) Delaunay conforming iso-surface, skeleton extraction and noise removal. Comput Geometry Theory Appl 19:175–189MathSciNetCrossRef Attali D, Lachaud J (2001) Delaunay conforming iso-surface, skeleton extraction and noise removal. Comput Geometry Theory Appl 19:175–189MathSciNetCrossRef
20.
Zurück zum Zitat Couprie M, Coeurjolly D, Zrour R (2007) Discrete bisector function and euclidean skeleton in 2D and 3D. Image Vis Comput 25(10):1519–1698CrossRef Couprie M, Coeurjolly D, Zrour R (2007) Discrete bisector function and euclidean skeleton in 2D and 3D. Image Vis Comput 25(10):1519–1698CrossRef
21.
Zurück zum Zitat Marie R, Labbani-Igbida O, Mouaddib E (2016) The delta medial axis: a fast and robust algorithm for filtered skeleton extraction. Pattern Recogn 56:26–39CrossRef Marie R, Labbani-Igbida O, Mouaddib E (2016) The delta medial axis: a fast and robust algorithm for filtered skeleton extraction. Pattern Recogn 56:26–39CrossRef
22.
Zurück zum Zitat Sun F, Choi Y, Yu Y, Wang W (2016) Medial meshes —a compact and accurate representation of medial axis transform. IEEE Trans Visual Comput Graph 22(3):1278–1290CrossRef Sun F, Choi Y, Yu Y, Wang W (2016) Medial meshes —a compact and accurate representation of medial axis transform. IEEE Trans Visual Comput Graph 22(3):1278–1290CrossRef
23.
Zurück zum Zitat Chazal F, Lieutier A (2005) The \(\lambda\)-medial axis. Graph Models 67(4):304–331CrossRef Chazal F, Lieutier A (2005) The \(\lambda\)-medial axis. Graph Models 67(4):304–331CrossRef
24.
Zurück zum Zitat Postolski M, Couprie M, Janaszewski M (2014) Scale filtered Euclidean medial axis and its hierarchy. Comput Vis Image Understand 129:89–102CrossRef Postolski M, Couprie M, Janaszewski M (2014) Scale filtered Euclidean medial axis and its hierarchy. Comput Vis Image Understand 129:89–102CrossRef
25.
Zurück zum Zitat Miklos B, Giesen J, Pauly M (2019) Discrete scale axis representations for 3D geometry. ACM Trans Graph 29:4 Miklos B, Giesen J, Pauly M (2019) Discrete scale axis representations for 3D geometry. ACM Trans Graph 29:4
26.
Zurück zum Zitat Giesen J, Miklos B, Pauly M, Wormser C (2009) The scale axis transform. In: Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, SCG Â’09, Association for Computing Machinery, New York, NY, USA, p 106–115 Giesen J, Miklos B, Pauly M, Wormser C (2009) The scale axis transform. In: Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, SCG Â’09, Association for Computing Machinery, New York, NY, USA, p 106–115
27.
Zurück zum Zitat Hesselink W, Roerdink J (2008) Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. IEEE Trans Pattern Anal Mach Intell 30(12):2204–2217CrossRef Hesselink W, Roerdink J (2008) Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. IEEE Trans Pattern Anal Mach Intell 30(12):2204–2217CrossRef
28.
Zurück zum Zitat Attali D, Montanvert A (1996) Modeling noise for a better simplification of skeletons. In: ICIP, Vol 3, pp 13–16 Attali D, Montanvert A (1996) Modeling noise for a better simplification of skeletons. In: ICIP, Vol 3, pp 13–16
29.
Zurück zum Zitat Foskey M, Lin MC, Manocha D (2003) Efficient computation of a simplified medial axis. In: Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, SM Â’03, Association for Computing Machinery, New York, NY, USA, p 96–107 Foskey M, Lin MC, Manocha D (2003) Efficient computation of a simplified medial axis. In: Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, SM Â’03, Association for Computing Machinery, New York, NY, USA, p 96–107
30.
Zurück zum Zitat Talbot H, Vincent L (1992) Euclidean skeletons and conditional bisectors. In: I.S. for Optics, Photonics (eds) Proceedings of Visual Communications and Image Processing, Vol 1818, pp 862–877 Talbot H, Vincent L (1992) Euclidean skeletons and conditional bisectors. In: I.S. for Optics, Photonics (eds) Proceedings of Visual Communications and Image Processing, Vol 1818, pp 862–877
31.
Zurück zum Zitat Meyer F (1979) Cytologie quantitative et morphologie mathématique, Ph.D. thesis, Ecole des mines de Paris Meyer F (1979) Cytologie quantitative et morphologie mathématique, Ph.D. thesis, Ecole des mines de Paris
32.
Zurück zum Zitat Danielsson P (1980) Euclidean distance mapping. Comput Graph Image Process 14:227–248CrossRef Danielsson P (1980) Euclidean distance mapping. Comput Graph Image Process 14:227–248CrossRef
33.
Zurück zum Zitat Malandain G, Fernandez-Vidal S (1998) Euclidean skeletons. Image Vis Comput 16(5):317–328CrossRef Malandain G, Fernandez-Vidal S (1998) Euclidean skeletons. Image Vis Comput 16(5):317–328CrossRef
34.
Zurück zum Zitat Couprie M, Zrour R (2005) Discrete bisector function and Euclidean skeleton. In: Discrete geometry for computer imagery. Springer, Berlin, Heidelberg, pp 216–227 Couprie M, Zrour R (2005) Discrete bisector function and Euclidean skeleton. In: Discrete geometry for computer imagery. Springer, Berlin, Heidelberg, pp 216–227
35.
Zurück zum Zitat Sidibe S, Zrour R, Andres E, Largeteau-Skapin G (2019) A discrete bisector function based on annulus. In: Discrete geometry for computer imagery DGCI, Vol. 11414, Springer International Publishing, pp 469–480 Sidibe S, Zrour R, Andres E, Largeteau-Skapin G (2019) A discrete bisector function based on annulus. In: Discrete geometry for computer imagery DGCI, Vol. 11414, Springer International Publishing, pp 469–480
36.
Zurück zum Zitat Andres E (1994) Discrete circles, rings and spheres. Comput Graph 18(5):695–706CrossRef Andres E (1994) Discrete circles, rings and spheres. Comput Graph 18(5):695–706CrossRef
37.
Zurück zum Zitat Andres E, Jacob M (1997) Discrete analytical hyperspheres. IEEE Trans Visual Comput Graph 3:75–86CrossRef Andres E, Jacob M (1997) Discrete analytical hyperspheres. IEEE Trans Visual Comput Graph 3:75–86CrossRef
38.
Zurück zum Zitat Shamos M (1978) Computational geometry, Ph.D. thesis, Yale University Shamos M (1978) Computational geometry, Ph.D. thesis, Yale University
39.
Zurück zum Zitat Malandain G, Boissonnat J-D (2002) Computing the diameter of a point set. Int J Comput Geometry Appl 12(6):489–510MathSciNetCrossRef Malandain G, Boissonnat J-D (2002) Computing the diameter of a point set. Int J Comput Geometry Appl 12(6):489–510MathSciNetCrossRef
41.
Zurück zum Zitat Remy E, Thiel E (2005) Exact medial axis with Euclidean distance. Image Vis Comput 23(2):167–175CrossRef Remy E, Thiel E (2005) Exact medial axis with Euclidean distance. Image Vis Comput 23(2):167–175CrossRef
42.
Zurück zum Zitat Saito T, Toriwaki J (1994) New algorithms for Euclidean distance transformation of an n-dimensional digitized picture with applications. Pattern Recogn 27(11):1551–1565CrossRef Saito T, Toriwaki J (1994) New algorithms for Euclidean distance transformation of an n-dimensional digitized picture with applications. Pattern Recogn 27(11):1551–1565CrossRef
43.
Zurück zum Zitat Meijster A, Roerdink J, Hesselink W (2000) A general algorithm for computing distance transforms in linear time. Math Morphol Appl Image Signal Process 2000:331–340MATH Meijster A, Roerdink J, Hesselink W (2000) A general algorithm for computing distance transforms in linear time. Math Morphol Appl Image Signal Process 2000:331–340MATH
44.
Zurück zum Zitat Hirata T (1996) A unified linear-time algorithm for computing distance maps. Inf Process Lett 58(3):129–133MathSciNetCrossRef Hirata T (1996) A unified linear-time algorithm for computing distance maps. Inf Process Lett 58(3):129–133MathSciNetCrossRef
46.
Zurück zum Zitat Siddiqi K, Zhang J, Macrini D, Shokoufandeh A, Bouix S, Dickinson S (2008) Retrieving articulated 3D models using medial surfaces. Mach Vis Appl 19(4):261–274CrossRef Siddiqi K, Zhang J, Macrini D, Shokoufandeh A, Bouix S, Dickinson S (2008) Retrieving articulated 3D models using medial surfaces. Mach Vis Appl 19(4):261–274CrossRef
48.
Zurück zum Zitat Sebastian T, Klein P, Kimia B (2001) Recognition of shapes by editing shock graphs. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV, pp 755–762 Sebastian T, Klein P, Kimia B (2001) Recognition of shapes by editing shock graphs. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV, pp 755–762
Metadaten
Titel
A 2D and 3D discrete bisector function based on annulus
verfasst von
Rita Zrour
Eric Andres
Sangbé Sidibe
Raphael Lenain
Gaelle Largeteau-Skapin
Publikationsdatum
30.03.2021
Verlag
Springer London
Erschienen in
Pattern Analysis and Applications / Ausgabe 3/2021
Print ISSN: 1433-7541
Elektronische ISSN: 1433-755X
DOI
https://doi.org/10.1007/s10044-021-00973-1

Weitere Artikel der Ausgabe 3/2021

Pattern Analysis and Applications 3/2021 Zur Ausgabe

Premium Partner