Skip to main content
Erschienen in: Journal of Materials Science 7/2015

01.04.2015 | Original Paper

A 2D percolation-based model for characterizing the piezoresistivity of carbon nanotube-based films

verfasst von: Bo Mi Lee, Kenneth J. Loh

Erschienen in: Journal of Materials Science | Ausgabe 7/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon nanotubes (CNTs) have attracted considerable attention due to their unique electrical, mechanical, and electromechanical properties. In particular, thin films formed by embedding CNTs in polymer matrices have been shown to exhibit strain-sensitive electromechanical properties, which can serve as an alternative to traditional strain sensors. Although numerous experimental studies have characterized their electrical properties and piezoresistivity, it remains unclear as to what nano-scale mechanisms dominate to govern nanocomposite electromechanical properties. Therefore, the objective of this study is to create a two-dimensional (2D) percolation-based numerical model to understand the electrical and coupled electromechanical behavior of CNT-based thin films. First, a percolation-based model with randomly dispersed straight nanotubes was generated. Second, the percolation and unstrained electrical properties of the model were evaluated as a function of CNT density and length. Next, uniaxial tensile–compressive strains were applied to the model for characterizing their electromechanical response and piezoresistivity. In addition, the effects of different intrinsic strain sensitivities of individual nanotubes were also considered. The results showed that bulk film strain sensitivity was strongly related to CNT density, length, and its intrinsic strain sensitivity. In particular, it was found that strain sensitivity decreased with increasing CNT density. While these strain sensitivity trends were consistent for different intrinsic CNT gage factors, the results were more complicated near the percolation threshold. These results were also compared to other experimental research so as to understand how different nano-scale parameters propagate and affect bulk film response.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706CrossRef Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706CrossRef
2.
Zurück zum Zitat Tsukagoshi K, Yoneya N, Uryu S, Aoyagi Y, Kanda A, Ootuka Y, Alphenaar BW (2002) Carbon nanotube devices for nanoelectronics. Physica B 323:107–114CrossRef Tsukagoshi K, Yoneya N, Uryu S, Aoyagi Y, Kanda A, Ootuka Y, Alphenaar BW (2002) Carbon nanotube devices for nanoelectronics. Physica B 323:107–114CrossRef
3.
Zurück zum Zitat Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297:787–792CrossRef Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297:787–792CrossRef
4.
Zurück zum Zitat De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539CrossRef De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539CrossRef
5.
Zurück zum Zitat Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657CrossRef Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657CrossRef
6.
Zurück zum Zitat Bandaru PR (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7:1–29CrossRef Bandaru PR (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7:1–29CrossRef
7.
Zurück zum Zitat Tombler TW, Zhou C, Alexseyev L, Kong J, Dai H, Liu L, Jayanthi CS, Tang M, Wu S-Y (2000) Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405:769–772CrossRef Tombler TW, Zhou C, Alexseyev L, Kong J, Dai H, Liu L, Jayanthi CS, Tang M, Wu S-Y (2000) Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405:769–772CrossRef
8.
Zurück zum Zitat Li QW, Li Y, Zhang XF, Chikkannanavar SB, Zhao YH, Dangelewicz AM, Zheng LX, Doorn SK, Jia QX, Peterson DE, Arendt PN, Zhu YT (2007) Structure-dependent electrical properties of carbon nanotube fibers. Adv Mater 19:3358–3363CrossRef Li QW, Li Y, Zhang XF, Chikkannanavar SB, Zhao YH, Dangelewicz AM, Zheng LX, Doorn SK, Jia QX, Peterson DE, Arendt PN, Zhu YT (2007) Structure-dependent electrical properties of carbon nanotube fibers. Adv Mater 19:3358–3363CrossRef
9.
Zurück zum Zitat Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128–130:37–46CrossRef Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128–130:37–46CrossRef
10.
Zurück zum Zitat Loh KJ-H (2008) Development of multifunctional carbon nanotube nanocomposite sensors for structural health monitoring. PhD Dissertation, University of Michigan Loh KJ-H (2008) Development of multifunctional carbon nanotube nanocomposite sensors for structural health monitoring. PhD Dissertation, University of Michigan
11.
Zurück zum Zitat Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25:630–645CrossRef Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25:630–645CrossRef
12.
Zurück zum Zitat Blanco J, García EJ, Guzmán de Villoria R, Wardle BL (2009) Limiting mechanisms of mode I interlaminar toughening of composites reinforced with aligned carbon nanotubes. J Compos Mater 43:825–841CrossRef Blanco J, García EJ, Guzmán de Villoria R, Wardle BL (2009) Limiting mechanisms of mode I interlaminar toughening of composites reinforced with aligned carbon nanotubes. J Compos Mater 43:825–841CrossRef
13.
Zurück zum Zitat Gojny FH, Wichmann MHG, Köpke U, Fiedler B, Schulte K (2004) Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64:2363–2371CrossRef Gojny FH, Wichmann MHG, Köpke U, Fiedler B, Schulte K (2004) Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64:2363–2371CrossRef
14.
Zurück zum Zitat Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870CrossRef Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870CrossRef
15.
Zurück zum Zitat Dharap P, Li Z, Nagarajaiah S, Barrera EV (2004) Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnol 15:379–382CrossRef Dharap P, Li Z, Nagarajaiah S, Barrera EV (2004) Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnol 15:379–382CrossRef
16.
Zurück zum Zitat Li Z, Dharap P, Nagarajaiah S, Barrera EV, Kim JD (2004) Carbon nanotube film sensors. Adv Mater 16:640–643CrossRef Li Z, Dharap P, Nagarajaiah S, Barrera EV, Kim JD (2004) Carbon nanotube film sensors. Adv Mater 16:640–643CrossRef
17.
Zurück zum Zitat Kang I, Schulz MJ, Kim JH, Shanov V, Shi D (2006) A carbon nanotube strain sensor for structural health monitoring. Smart Mater Struct 15:737–748CrossRef Kang I, Schulz MJ, Kim JH, Shanov V, Shi D (2006) A carbon nanotube strain sensor for structural health monitoring. Smart Mater Struct 15:737–748CrossRef
18.
Zurück zum Zitat Loh KJ, Kim J, Lynch JP, Kam NWS, Kotov NA (2007) Multifunctional layer-by-layer carbon nanotube–polyelectrolyte thin films for strain and corrosion sensing. Smart Mater Struct 16:429–438CrossRef Loh KJ, Kim J, Lynch JP, Kam NWS, Kotov NA (2007) Multifunctional layer-by-layer carbon nanotube–polyelectrolyte thin films for strain and corrosion sensing. Smart Mater Struct 16:429–438CrossRef
19.
Zurück zum Zitat Loh KJ, Lynch JP, Shim BS, Kotov NA (2008) Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors. JIMSS 19:747–764 Loh KJ, Lynch JP, Shim BS, Kotov NA (2008) Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors. JIMSS 19:747–764
20.
Zurück zum Zitat Pham GT, Park YB, Liang Z, Zhang C, Wang B (2008) Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos B 39:209–216CrossRef Pham GT, Park YB, Liang Z, Zhang C, Wang B (2008) Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos B 39:209–216CrossRef
21.
Zurück zum Zitat Park M, Kim H, Youngblood JP (2008) Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films. Nanotechnol 19:055705CrossRef Park M, Kim H, Youngblood JP (2008) Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films. Nanotechnol 19:055705CrossRef
22.
Zurück zum Zitat Loyola B, La Saponara V, Loh KJ (2010) In situ strain monitoring of fiber-reinforced polymers using embedded piezoresistive nanocomposites. JMSC 45:6786–6798. doi:10.1007/s10853-010-4775-y Loyola B, La Saponara V, Loh KJ (2010) In situ strain monitoring of fiber-reinforced polymers using embedded piezoresistive nanocomposites. JMSC 45:6786–6798. doi:10.​1007/​s10853-010-4775-y
23.
Zurück zum Zitat Kumar S, Murthy JY, Alam MA (2005) Percolating conduction in finite nanotube networks. Phys Rev Lett 95:066802CrossRef Kumar S, Murthy JY, Alam MA (2005) Percolating conduction in finite nanotube networks. Phys Rev Lett 95:066802CrossRef
24.
Zurück zum Zitat Behnam A, Ural A (2007) Computational study of geometry-dependent resistivity scaling in single-walled carbon nanotube films. Phys Rev B 75:125432CrossRef Behnam A, Ural A (2007) Computational study of geometry-dependent resistivity scaling in single-walled carbon nanotube films. Phys Rev B 75:125432CrossRef
25.
Zurück zum Zitat Li C, Thostenson ET, Chou T-W (2008) Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites. Compos Sci Technol 68:1445–1452CrossRef Li C, Thostenson ET, Chou T-W (2008) Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites. Compos Sci Technol 68:1445–1452CrossRef
26.
Zurück zum Zitat Du F, Fischer JE, Winey KI (2005) Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys Rev B 72:121404CrossRef Du F, Fischer JE, Winey KI (2005) Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys Rev B 72:121404CrossRef
27.
Zurück zum Zitat Bao WS, Meguid SA, Zhu ZH, Meguid MJ (2011) Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes. Nanotechnol 22:485704CrossRef Bao WS, Meguid SA, Zhu ZH, Meguid MJ (2011) Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes. Nanotechnol 22:485704CrossRef
28.
Zurück zum Zitat Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H (2008) Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 56:2929–2936CrossRef Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H (2008) Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 56:2929–2936CrossRef
29.
Zurück zum Zitat Hu N, Karube Y, Arai M, Watanabe T, Yan C, Li Y, Liu Y, Fukunaga H (2010) Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48:680–687CrossRef Hu N, Karube Y, Arai M, Watanabe T, Yan C, Li Y, Liu Y, Fukunaga H (2010) Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48:680–687CrossRef
30.
Zurück zum Zitat Rahman R, Servati P (2012) Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films. Nanotechnol 23:055703CrossRef Rahman R, Servati P (2012) Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films. Nanotechnol 23:055703CrossRef
31.
Zurück zum Zitat Amini A, Bahreyni B (2012) Behavioral model for electrical response and strain sensitivity of nanotube-based nanocomposite materials. J Vac Sci Technol B 30(2):022001CrossRef Amini A, Bahreyni B (2012) Behavioral model for electrical response and strain sensitivity of nanotube-based nanocomposite materials. J Vac Sci Technol B 30(2):022001CrossRef
32.
Zurück zum Zitat Wang Z, Ye X (2013) A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle. Nanotechnol 24:265704CrossRef Wang Z, Ye X (2013) A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle. Nanotechnol 24:265704CrossRef
33.
Zurück zum Zitat Stampfer C, Jungen A, Linderman R, Obergfell D, Roth S, Hierold C (2006) Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Lett 6:1449–1453CrossRef Stampfer C, Jungen A, Linderman R, Obergfell D, Roth S, Hierold C (2006) Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Lett 6:1449–1453CrossRef
34.
Zurück zum Zitat Cullinan MA, Culpepper ML (2010) Carbon nanotubes as piezoresistive microelectromechanical sensors: theory and experiment. Phys Rev B 82:115428CrossRef Cullinan MA, Culpepper ML (2010) Carbon nanotubes as piezoresistive microelectromechanical sensors: theory and experiment. Phys Rev B 82:115428CrossRef
35.
Zurück zum Zitat Broadbent SR, Hammersley JM (1957) Percolation processes. MPCPS 53:629–641 Broadbent SR, Hammersley JM (1957) Percolation processes. MPCPS 53:629–641
36.
Zurück zum Zitat Hammersley JM (1957) Percolation processes: lower bounds for the critical probability. Ann Math Stat 28:790–795CrossRef Hammersley JM (1957) Percolation processes: lower bounds for the critical probability. Ann Math Stat 28:790–795CrossRef
37.
Zurück zum Zitat Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588CrossRef Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588CrossRef
38.
Zurück zum Zitat Lee BM, Loh KJ, Burton A, Loyola BR (2014) Modeling the electromechanical and strain response of carbon nanotube-based nanocomposites. Paper presented at the SPIE, San Diego Lee BM, Loh KJ, Burton A, Loyola BR (2014) Modeling the electromechanical and strain response of carbon nanotube-based nanocomposites. Paper presented at the SPIE, San Diego
39.
Zurück zum Zitat Odegard G (2009) Multiscale modeling of nanocomposite materials. In: Farahmand B (ed) Virtual testing and predictive modeling. Springer, New York, pp 221–245. doi: 10.1007/978-0-387-95924-5_8 Odegard G (2009) Multiscale modeling of nanocomposite materials. In: Farahmand B (ed) Virtual testing and predictive modeling. Springer, New York, pp 221–245. doi: 10.1007/978-0-387-95924-5_8
40.
Zurück zum Zitat Harper LT, Qian C, Turner TA, Li S, Warrior NA (2012) Representative volume elements for discontinuous carbon fibre composites—Part 1: boundary conditions. Compos Sci Technol 72:225–234CrossRef Harper LT, Qian C, Turner TA, Li S, Warrior NA (2012) Representative volume elements for discontinuous carbon fibre composites—Part 1: boundary conditions. Compos Sci Technol 72:225–234CrossRef
41.
Zurück zum Zitat Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. IJSS 40:3647–3679 Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. IJSS 40:3647–3679
42.
Zurück zum Zitat Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372CrossRef Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372CrossRef
43.
Zurück zum Zitat Alamusi, Hu N, Fukunaga H, Atobe S, Liu Y, Li J (2011) Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 11:10691–10723CrossRef Alamusi, Hu N, Fukunaga H, Atobe S, Liu Y, Li J (2011) Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 11:10691–10723CrossRef
44.
Zurück zum Zitat Berhan L, Sastry AM (2007) Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models. Phys Rev E 75:041120CrossRef Berhan L, Sastry AM (2007) Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models. Phys Rev E 75:041120CrossRef
45.
Zurück zum Zitat McEuen PL, Park JY (2004) Electron transport in single-walled carbon nanotubes. MRS Bull 29:272–275CrossRef McEuen PL, Park JY (2004) Electron transport in single-walled carbon nanotubes. MRS Bull 29:272–275CrossRef
46.
Zurück zum Zitat Fuhrer MS, Nygård J, Shih L, Forero M, Yoon Y-G, Mazzoni MSC, Choi HJ, Ihm J, Louie SG, Zettl A, McEuen PL (2000) Crossed nanotube junctions. Science 288:494–497CrossRef Fuhrer MS, Nygård J, Shih L, Forero M, Yoon Y-G, Mazzoni MSC, Choi HJ, Ihm J, Louie SG, Zettl A, McEuen PL (2000) Crossed nanotube junctions. Science 288:494–497CrossRef
47.
Zurück zum Zitat Nirmalraj PN, Lyons PE, De S, Coleman JN, Boland JJ (2009) Electrical connectivity in single-walled carbon nanotube networks. Nano Lett 9:3890–3895CrossRef Nirmalraj PN, Lyons PE, De S, Coleman JN, Boland JJ (2009) Electrical connectivity in single-walled carbon nanotube networks. Nano Lett 9:3890–3895CrossRef
48.
Zurück zum Zitat Jang H-S, Lee Y-H, Na H-J, Nahm SH (2008) Variation in electrical resistance versus strain of an individual multiwalled carbon nanotube. JAP 104(11):114304 Jang H-S, Lee Y-H, Na H-J, Nahm SH (2008) Variation in electrical resistance versus strain of an individual multiwalled carbon nanotube. JAP 104(11):114304
49.
Zurück zum Zitat Cao J, Wang Q, Dai H (2003) Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys Rev Lett 90:157601CrossRef Cao J, Wang Q, Dai H (2003) Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys Rev Lett 90:157601CrossRef
50.
Zurück zum Zitat Zeng X, Xu X, Shenai PM, Kovalev E, Baudot C, Mathews N, Zhao Y (2011) Characteristics of the electrical percolation in carbon nanotubes/polymer nanocomposites. J Phys Chem C 115:21685–21690CrossRef Zeng X, Xu X, Shenai PM, Kovalev E, Baudot C, Mathews N, Zhao Y (2011) Characteristics of the electrical percolation in carbon nanotubes/polymer nanocomposites. J Phys Chem C 115:21685–21690CrossRef
51.
Zurück zum Zitat Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498CrossRef Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498CrossRef
52.
Zurück zum Zitat Lee D, Hong HP, Lee CJ, Park CW, Min NK (2011) Microfabrication and characterization of spray-coated single-wall carbon nanotube film strain gauges. Nanotechnol 22:455301CrossRef Lee D, Hong HP, Lee CJ, Park CW, Min NK (2011) Microfabrication and characterization of spray-coated single-wall carbon nanotube film strain gauges. Nanotechnol 22:455301CrossRef
53.
Zurück zum Zitat Li X, Levy C, Elaadil L (2008) Multiwalled carbon nanotube film for strain sensing. Nanotechnol 19:045501CrossRef Li X, Levy C, Elaadil L (2008) Multiwalled carbon nanotube film for strain sensing. Nanotechnol 19:045501CrossRef
54.
Zurück zum Zitat Jang JE, Cha SN, Choi Y, Amaratunga Gehan AJ, Kang DJ, Hasko DG, Jung JE, Kim JM (2005) Nanoelectromechanical switches with vertically aligned carbon nanotubes. Appl Phys Lett 87:163114 Jang JE, Cha SN, Choi Y, Amaratunga Gehan AJ, Kang DJ, Hasko DG, Jung JE, Kim JM (2005) Nanoelectromechanical switches with vertically aligned carbon nanotubes. Appl Phys Lett 87:163114
Metadaten
Titel
A 2D percolation-based model for characterizing the piezoresistivity of carbon nanotube-based films
verfasst von
Bo Mi Lee
Kenneth J. Loh
Publikationsdatum
01.04.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-8862-y

Weitere Artikel der Ausgabe 7/2015

Journal of Materials Science 7/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.