Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

28.06.2020 | Original Article | Ausgabe 12/2020

International Journal of Machine Learning and Cybernetics 12/2020

A bibliometric analysis on deep learning during 2007–2019

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 12/2020
Autoren:
Yang Li, Zeshui Xu, Xinxin Wang, Xizhao Wang
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

As an emerging and applicable method, deep learning (DL) has attracted much attention in recent years. With the development of DL and the massive of publications and researches in this direction, a comprehensive analysis of DL is necessary. In this paper, from the perspective of bibliometrics, a comprehensive analysis of publications of DL is deployed from 2007 to 2019 (the first publication with keywords “deep learning” and “machine learning” was published in 2007). By preprocessing, 5722 publications are exported from Web of Science and they are imported into the professional science mapping tools: VOS viewer and Cite Space. Firstly, the publication structures are analyzed based on annual publications, and the publication of the most productive countries/regions, institutions and authors. Secondly, by the use of VOS viewer, the co-citation networks of countries/regions, institutions, authors and papers are depicted. The citation structure of them and the most influential of them are further analyzed. Thirdly, the cooperation networks of countries/regions, institutions and authors are illustrated by VOS viewer. Time-line review and citation burst detection of keywords are exported from Cite Space to detect the hotspots and research trend. Finally, some conclusions of this paper are given. This paper provides a preliminary knowledge of DL for researchers who are interested in this area, and also makes a conclusive and comprehensive analysis of DL for these who want to do further research on this area.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 12/2020

International Journal of Machine Learning and Cybernetics 12/2020 Zur Ausgabe