05.05.2020 | Original Article | Ausgabe 12/2020

View-independent representation with frame interpolation method for skeleton-based human action recognition
Wichtige Hinweise
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abstract
Human action recognition is an important branch of computer vision science. It is a challenging task based on skeletal data because of joints’ complex spatiotemporal information. In this work, we propose a method for action recognition, which consists of three parts: view-independent representation, frame interpolation, and combined model. First, the action sequence becomes view-independent representations independent of the view. Second, when judgment conditions are met, differentiated frame interpolations are used to expand the temporal dimensional information. Then, a combined model is adopted to extract these representation features and classify actions. Experimental results on two multi-view benchmark datasets Northwestern-UCLA and NTU RGB+D demonstrate the effectiveness of our complete method. Although using only one type of action feature and a simple architecture combined model, our complete method still outperforms most of the referential state-of-the-art methods and has strong robustness.