Skip to main content
Erschienen in: Journal of Scientific Computing 1/2020

01.07.2020

A Combined Offline–Online Algorithm for Hodgkin–Huxley Neural Networks

verfasst von: Zhong-qi Kyle Tian, Jennifer Crodelle, Douglas Zhou

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spiking neural networks are widely applied to simulate cortical dynamics in the brain and are regarded as the next generation of machine learning. The classical Hodgkin–Huxley (HH) neuron is the foundation of all spiking neural models. In numerical simulation, however, the stiffness of the nonlinear HH equations during an action potential (a spike) period prohibits the use of large time steps for numerical integration. Outside of this stiff period, the HH equations can be efficiently simulated with a relatively large time step. In this work, we present an efficient and accurate offline–online combined method that stops evolving the HH equations during an action potential period, uses a pre-computed (offline) high-resolution data set to determine the voltage value during the spike, and restarts the time evolution of the HH equations after the stiff period using reset values interpolated from the offline data set. Our method allows for time steps an order of magnitude larger than those used in the standard Runge–Kutta (RK) method, while accurately capturing dynamical properties of HH neurons. In addition, this offline–online method robustly achieves a maximum of a tenfold decrease in computation time as compared to RK methods, a result that is independent of network size.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aihara, K.: Chaotic oscillations and bifurcations in squid giant axons. In: Chaos, pp. 257–269 (1986) Aihara, K.: Chaotic oscillations and bifurcations in squid giant axons. In: Chaos, pp. 257–269 (1986)
2.
Zurück zum Zitat Beierlein, M., Gibson, J.R., Connors, B.W.: A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat. Neurosci. 3(9), 904–910 (2000) Beierlein, M., Gibson, J.R., Connors, B.W.: A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat. Neurosci. 3(9), 904–910 (2000)
3.
Zurück zum Zitat Börgers, C., Nectow, A.R.: Exponential time differencing for Hodgkin–Huxley-like ODEs. SIAM J. Sci. Comput. 35(3), B623–B643 (2013)MathSciNetMATH Börgers, C., Nectow, A.R.: Exponential time differencing for Hodgkin–Huxley-like ODEs. SIAM J. Sci. Comput. 35(3), B623–B643 (2013)MathSciNetMATH
4.
Zurück zum Zitat Connors, B.W., Long, M.A.: Electrical synapses in the mammalian brain. Annu. Rev. Neurosci. 27, 393–418 (2004) Connors, B.W., Long, M.A.: Electrical synapses in the mammalian brain. Annu. Rev. Neurosci. 27, 393–418 (2004)
5.
Zurück zum Zitat Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176(2), 430–455 (2002)MathSciNetMATH Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176(2), 430–455 (2002)MathSciNetMATH
6.
Zurück zum Zitat Crodelle, J., Zhou, D., Kovacic, G., Cai, D.: A role for electrotonic coupling between cortical pyramidal cells. Front. Comput. Neurosci. 13, 33 (2019) Crodelle, J., Zhou, D., Kovacic, G., Cai, D.: A role for electrotonic coupling between cortical pyramidal cells. Front. Comput. Neurosci. 13, 33 (2019)
7.
Zurück zum Zitat Dayan, P., Abbott, L.: Theoretical neuroscience: computational and mathematical modeling of neural systems. J. Cogn. Neurosci. 15(1), 154–155 (2003) Dayan, P., Abbott, L.: Theoretical neuroscience: computational and mathematical modeling of neural systems. J. Cogn. Neurosci. 15(1), 154–155 (2003)
8.
Zurück zum Zitat Dayan, P., Abbott, L.F.: Theoretical Neuroscience, vol. 806. MIT Press, Cambridge (2001)MATH Dayan, P., Abbott, L.F.: Theoretical Neuroscience, vol. 806. MIT Press, Cambridge (2001)MATH
9.
Zurück zum Zitat Ding, L., Hou, C.: Stabilizing control of hopf bifurcation in the Hodgkin–Huxley model via washout filter with linear control term. Nonlinear Dyn. 60(1–2), 131–139 (2010)MathSciNetMATH Ding, L., Hou, C.: Stabilizing control of hopf bifurcation in the Hodgkin–Huxley model via washout filter with linear control term. Nonlinear Dyn. 60(1–2), 131–139 (2010)MathSciNetMATH
10.
Zurück zum Zitat Galarreta, M., Hestrin, S.: A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402(6757), 72–75 (1999) Galarreta, M., Hestrin, S.: A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402(6757), 72–75 (1999)
11.
Zurück zum Zitat Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)MATH Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)MATH
12.
Zurück zum Zitat Gu, H., Pan, B.: A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonlinear Dyn. 81(4), 2107–2126 (2015)MathSciNet Gu, H., Pan, B.: A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonlinear Dyn. 81(4), 2107–2126 (2015)MathSciNet
13.
Zurück zum Zitat Guckenheimer, J., Oliva, R.A.: Chaos in the Hodgkin–Huxley model. SIAM J. Appl. Dyn. Syst. 1(1), 105–114 (2002)MathSciNetMATH Guckenheimer, J., Oliva, R.A.: Chaos in the Hodgkin–Huxley model. SIAM J. Appl. Dyn. Syst. 1(1), 105–114 (2002)MathSciNetMATH
14.
Zurück zum Zitat Hansel, D., Mato, G., Meunier, C., Neltner, L.: On numerical simulations of integrate-and-fire neural networks. Neural Comput. 10(2), 467–483 (1998) Hansel, D., Mato, G., Meunier, C., Neltner, L.: On numerical simulations of integrate-and-fire neural networks. Neural Comput. 10(2), 467–483 (1998)
15.
Zurück zum Zitat Hansel, D., Sompolinsky, H.: Chaos and synchrony in a model of a hypercolumn in visual cortex. J. Comput. Neurosci. 3(1), 7–34 (1996) Hansel, D., Sompolinsky, H.: Chaos and synchrony in a model of a hypercolumn in visual cortex. J. Comput. Neurosci. 3(1), 7–34 (1996)
16.
Zurück zum Zitat Hassard, B.: Bifurcation of periodic solutions of the Hodgkin–Huxley model for the squid giant axon. J. Theor. Biol. 71(3), 401–420 (1978)MathSciNet Hassard, B.: Bifurcation of periodic solutions of the Hodgkin–Huxley model for the squid giant axon. J. Theor. Biol. 71(3), 401–420 (1978)MathSciNet
17.
Zurück zum Zitat Hertz, J., Prügel-Bennett, A.: Learning short synfire chains by self-organization. Netw. Comput. Neural Syst. 7(2), 357–363 (1996)MATH Hertz, J., Prügel-Bennett, A.: Learning short synfire chains by self-organization. Netw. Comput. Neural Syst. 7(2), 357–363 (1996)MATH
18.
Zurück zum Zitat Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952) Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)
19.
Zurück zum Zitat Ikegaya, Y., Sasaki, T., Ishikawa, D., Honma, N., Tao, K., Takahashi, N., Minamisawa, G., Ujita, S., Matsuki, N.: Interpyramid spike transmission stabilizes the sparseness of recurrent network activity. Cerebral Cortex 23(2), 293–304 (2012) Ikegaya, Y., Sasaki, T., Ishikawa, D., Honma, N., Tao, K., Takahashi, N., Minamisawa, G., Ujita, S., Matsuki, N.: Interpyramid spike transmission stabilizes the sparseness of recurrent network activity. Cerebral Cortex 23(2), 293–304 (2012)
20.
Zurück zum Zitat Ito, S., Hansen, M.E., Heiland, R., Lumsdaine, A., Litke, A.M., Beggs, J.M.: Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PLoS ONE 6(11), e27431 (2011) Ito, S., Hansen, M.E., Heiland, R., Lumsdaine, A., Litke, A.M., Beggs, J.M.: Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PLoS ONE 6(11), e27431 (2011)
21.
Zurück zum Zitat Koch, C., Segev, I.: Methods in Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge (1998) Koch, C., Segev, I.: Methods in Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge (1998)
22.
Zurück zum Zitat Kopell, N., Ermentrout, B.: Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc. Natl. Acad. Sci. 101(43), 15482–15487 (2004) Kopell, N., Ermentrout, B.: Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc. Natl. Acad. Sci. 101(43), 15482–15487 (2004)
23.
Zurück zum Zitat Mainen, Z.F., Sejnowski, T.J.: Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382(6589), 363 (1996) Mainen, Z.F., Sejnowski, T.J.: Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382(6589), 363 (1996)
24.
Zurück zum Zitat Mattia, M., Del Giudice, P.: Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Comput. 12(10), 2305–2329 (2000) Mattia, M., Del Giudice, P.: Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Comput. 12(10), 2305–2329 (2000)
25.
Zurück zum Zitat McLaughlin, D., Shapley, R., Shelley, M., Wielaard, D.J.: A neuronal network model of macaque primary visual cortex (v1): orientation selectivity and dynamics in the input layer 4c\(\alpha \). Proc. Natl. Acad. Sci. 97(14), 8087–8092 (2000) McLaughlin, D., Shapley, R., Shelley, M., Wielaard, D.J.: A neuronal network model of macaque primary visual cortex (v1): orientation selectivity and dynamics in the input layer 4c\(\alpha \). Proc. Natl. Acad. Sci. 97(14), 8087–8092 (2000)
26.
Zurück zum Zitat Monteforte, M., Wolf, F.: Dynamic flux tubes form reservoirs of stability in neuronal circuits. Phys. Rev. X 2(4), 041007 (2012) Monteforte, M., Wolf, F.: Dynamic flux tubes form reservoirs of stability in neuronal circuits. Phys. Rev. X 2(4), 041007 (2012)
27.
Zurück zum Zitat Nie, Q., Wan, F.Y., Zhang, Y.T., Liu, X.F.: Compact integration factor methods in high spatial dimensions. J. Comput. Phys. 227(10), 5238–5255 (2008)MathSciNetMATH Nie, Q., Wan, F.Y., Zhang, Y.T., Liu, X.F.: Compact integration factor methods in high spatial dimensions. J. Comput. Phys. 227(10), 5238–5255 (2008)MathSciNetMATH
28.
Zurück zum Zitat Oseledec, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19(2), 197–231 (1968)MathSciNet Oseledec, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19(2), 197–231 (1968)MathSciNet
29.
Zurück zum Zitat Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)MATH Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)MATH
30.
Zurück zum Zitat Parker, T.S., Chua, L.: Practical Numerical Algorithms for Chaotic Systems. Springer, Berlin (2012)MATH Parker, T.S., Chua, L.: Practical Numerical Algorithms for Chaotic Systems. Springer, Berlin (2012)MATH
31.
Zurück zum Zitat Perkel, D.H., Gerstein, G.L., Moore, G.P.: Neuronal spike trains and stochastic point processes: II. Simultaneous spike trains. Biophys. J. 7(4), 419–440 (1967) Perkel, D.H., Gerstein, G.L., Moore, G.P.: Neuronal spike trains and stochastic point processes: II. Simultaneous spike trains. Biophys. J. 7(4), 419–440 (1967)
32.
Zurück zum Zitat Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Frégnac, Y., Markram, H., Destexhe, A.: Minimal Hodgkin–Huxley type models for different classes of cortical and thalamic neurons. Biol. Cybern. 99(4), 427–441 (2008)MathSciNetMATH Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Frégnac, Y., Markram, H., Destexhe, A.: Minimal Hodgkin–Huxley type models for different classes of cortical and thalamic neurons. Biol. Cybern. 99(4), 427–441 (2008)MathSciNetMATH
33.
Zurück zum Zitat Quinn, C.J., Coleman, T.P., Kiyavash, N., Hatsopoulos, N.G.: Estimating the directed information to infer causal relationships in ensemble neural spike train recordings. J. Comput. Neurosci. 30(1), 17–44 (2011)MathSciNet Quinn, C.J., Coleman, T.P., Kiyavash, N., Hatsopoulos, N.G.: Estimating the directed information to infer causal relationships in ensemble neural spike train recordings. J. Comput. Neurosci. 30(1), 17–44 (2011)MathSciNet
34.
Zurück zum Zitat Rangan, A.V., Cai, D.: Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. J. Comput. Neurosci. 22(1), 81–100 (2007)MathSciNet Rangan, A.V., Cai, D.: Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. J. Comput. Neurosci. 22(1), 81–100 (2007)MathSciNet
35.
Zurück zum Zitat Revel, J., Karnovsky, M.: Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33(3), C7 (1967) Revel, J., Karnovsky, M.: Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol. 33(3), C7 (1967)
36.
Zurück zum Zitat Rinzel, J., Ermentrout, G.B.: Analysis of neural excitability and oscillations. Methods Neuronal Model. 2, 251–292 (1998) Rinzel, J., Ermentrout, G.B.: Analysis of neural excitability and oscillations. Methods Neuronal Model. 2, 251–292 (1998)
37.
Zurück zum Zitat Shelley, M.J., Tao, L.: Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. J. Comput. Neurosci. 11(2), 111–119 (2001) Shelley, M.J., Tao, L.: Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. J. Comput. Neurosci. 11(2), 111–119 (2001)
38.
Zurück zum Zitat Shinomoto, S., Kim, H., Shimokawa, T., Matsuno, N., Funahashi, S., Shima, K., Fujita, I., Tamura, H., Doi, T., Kawano, K., et al.: Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS Comput. Biol. 5(7), e1000433 (2009)MathSciNet Shinomoto, S., Kim, H., Shimokawa, T., Matsuno, N., Funahashi, S., Shima, K., Fujita, I., Tamura, H., Doi, T., Kawano, K., et al.: Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS Comput. Biol. 5(7), e1000433 (2009)MathSciNet
39.
Zurück zum Zitat Shlens, J., Field, G.D., Gauthier, J.L., Grivich, M.I., Petrusca, D., Sher, A., Litke, A.M., Chichilnisky, E.: The structure of multi-neuron firing patterns in primate retina. J. Neurosci. 26(32), 8254–8266 (2006) Shlens, J., Field, G.D., Gauthier, J.L., Grivich, M.I., Petrusca, D., Sher, A., Litke, A.M., Chichilnisky, E.: The structure of multi-neuron firing patterns in primate retina. J. Neurosci. 26(32), 8254–8266 (2006)
40.
Zurück zum Zitat Somers, D.C., Nelson, S.B., Sur, M.: An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15(8), 5448–5465 (1995)MATH Somers, D.C., Nelson, S.B., Sur, M.: An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15(8), 5448–5465 (1995)MATH
41.
Zurück zum Zitat Song, S., Sjöström, P.J., Reigl, M., Nelson, S., Chklovskii, D.B.: Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3(3), e68 (2005) Song, S., Sjöström, P.J., Reigl, M., Nelson, S., Chklovskii, D.B.: Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3(3), e68 (2005)
42.
Zurück zum Zitat Sun, Y., Zhou, D., Rangan, A.V., Cai, D.: Library-based numerical reduction of the Hodgkin–Huxley neuron for network simulation. J. Comput. Neurosci. 27(3), 369–390 (2009)MathSciNet Sun, Y., Zhou, D., Rangan, A.V., Cai, D.: Library-based numerical reduction of the Hodgkin–Huxley neuron for network simulation. J. Comput. Neurosci. 27(3), 369–390 (2009)MathSciNet
43.
Zurück zum Zitat Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009)
44.
Zurück zum Zitat Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, New York (2002)MATH Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, New York (2002)MATH
45.
Zurück zum Zitat Tian, Z.Q.K., Zhou, D.: Exponential time differencing algorithm for pulse-coupled Hodgkin–Huxley neuronal networks. arXiv preprint arXiv:1910.08724 (2019) Tian, Z.Q.K., Zhou, D.: Exponential time differencing algorithm for pulse-coupled Hodgkin–Huxley neuronal networks. arXiv preprint arXiv:​1910.​08724 (2019)
46.
Zurück zum Zitat Wang, Y., Barakat, A., Zhou, H.: Electrotonic coupling between pyramidal neurons in the neocortex. PLoS ONE 5(4), e10253 (2010) Wang, Y., Barakat, A., Zhou, H.: Electrotonic coupling between pyramidal neurons in the neocortex. PLoS ONE 5(4), e10253 (2010)
47.
Zurück zum Zitat Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D: Nonlinear Phenom. 16(3), 285–317 (1985)MathSciNetMATH Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D: Nonlinear Phenom. 16(3), 285–317 (1985)MathSciNetMATH
48.
Zurück zum Zitat Xu, Z.Q.J., Bi, G., Zhou, D., Cai, D.: A dynamical state underlying the second order maximum entropy principle in neuronal networks. Commun. Math. Sci. 15(3), 665–692 (2017)MathSciNetMATH Xu, Z.Q.J., Bi, G., Zhou, D., Cai, D.: A dynamical state underlying the second order maximum entropy principle in neuronal networks. Commun. Math. Sci. 15(3), 665–692 (2017)MathSciNetMATH
49.
Zurück zum Zitat Zhou, D., Rangan, A.V., Sun, Y., Cai, D.: Network-induced chaos in integrate-and-fire neuronal ensembles. Phys. Rev. E 80(3), 031918 (2009) Zhou, D., Rangan, A.V., Sun, Y., Cai, D.: Network-induced chaos in integrate-and-fire neuronal ensembles. Phys. Rev. E 80(3), 031918 (2009)
50.
Zurück zum Zitat Zhou, D., Sun, Y., Rangan, A.V., Cai, D.: Spectrum of Lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type. J. Comput. Neurosci. 28(2), 229–245 (2010)MathSciNet Zhou, D., Sun, Y., Rangan, A.V., Cai, D.: Spectrum of Lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type. J. Comput. Neurosci. 28(2), 229–245 (2010)MathSciNet
51.
Zurück zum Zitat Zhou, D., Xiao, Y., Zhang, Y., Xu, Z., Cai, D.: Granger causality network reconstruction of conductance-based integrate-and-fire neuronal systems. PLoS ONE 9(2), e87636 (2014) Zhou, D., Xiao, Y., Zhang, Y., Xu, Z., Cai, D.: Granger causality network reconstruction of conductance-based integrate-and-fire neuronal systems. PLoS ONE 9(2), e87636 (2014)
Metadaten
Titel
A Combined Offline–Online Algorithm for Hodgkin–Huxley Neural Networks
verfasst von
Zhong-qi Kyle Tian
Jennifer Crodelle
Douglas Zhou
Publikationsdatum
01.07.2020
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2020
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01261-6

Weitere Artikel der Ausgabe 1/2020

Journal of Scientific Computing 1/2020 Zur Ausgabe

Premium Partner