Skip to main content
Erschienen in: Cluster Computing 2/2019

16.01.2019

A comparative study on spiking neural network encoding schema: implemented with cloud computing

verfasst von: Ammar Almomani, Mohammad Alauthman, Mohammed Alweshah, O. Dorgham, Firas Albalas

Erschienen in: Cluster Computing | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spiking neural networks (SNN) represents the third generation of neural network models, it differs significantly from the early neural network generation. The time is becoming the most important input. The presence and precise timing of spikes encapsulate have a meaning such as human brain behavior. However, deferent techniques are therefore required to submit a stimulus to the neural network to build the timing spike. The characteristics of these spikes are based on their firing time because of the stereotypical nature of the human brain. Neural networks (NN) as engineering tools Operate on analog quantities (analog input, analog output), SNN More powerful than classic NN Interesting to implement in hardware. But the Problem that is internally work with spike trains unequal analog signal, so this algorithm design to firstly convert analog function into spike trains which calling encoding (E) then Convert spike trains into analog function: which calling decoding (D), so to use spiking NN as engineering tool: communication problem must be solved using some international encoding algorithms. This paper discusses techniques of transforming data into a suitable form for SNN submission. We present a comparative study on SNN encoding schema that effect on SNN performance in hardware and software implementation, however, this is the first comprehensive study to discuss encoding algorithms in SNNs in details, which involved the advantages, disadvantages and when and where we can use and implements the encoding algorithms, with focusing on some examples implement SNN in cloud computing generally, and which algorithms still unused in the world of cloud computing to make the door open for new researcher.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Maass, W., Bishop, C.M.: Pulsed Neural Networks. MIT, Cambridge (2001)MATH Maass, W., Bishop, C.M.: Pulsed Neural Networks. MIT, Cambridge (2001)MATH
3.
4.
Zurück zum Zitat Gerstner, W., Kistler, W.: Spiking Neuron Models. Cambridge University Press, Cambridge (2002)MATHCrossRef Gerstner, W., Kistler, W.: Spiking Neuron Models. Cambridge University Press, Cambridge (2002)MATHCrossRef
5.
Zurück zum Zitat Kistler, W.M., Gerstner, W., van Hemmen, J.L.: Reduction of the Hodgkin–Huxley equations to a single-variable threshold model. Neural Comput. 9(5), 1015–1045 (1997)CrossRef Kistler, W.M., Gerstner, W., van Hemmen, J.L.: Reduction of the Hodgkin–Huxley equations to a single-variable threshold model. Neural Comput. 9(5), 1015–1045 (1997)CrossRef
6.
Zurück zum Zitat Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116(4), 449–472 (1952)CrossRef Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116(4), 449–472 (1952)CrossRef
7.
Zurück zum Zitat Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15(5), 1063–1070 (2004)CrossRef Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15(5), 1063–1070 (2004)CrossRef
8.
Zurück zum Zitat Izhikevich, E.M., Moehlis, J.: Dynamical systems in neuroscience: the geometry of excitability and bursting. SIAM Rev. 50(2), 397 (2008) Izhikevich, E.M., Moehlis, J.: Dynamical systems in neuroscience: the geometry of excitability and bursting. SIAM Rev. 50(2), 397 (2008)
9.
Zurück zum Zitat Hamed, H.N.A., Kasabov, N., Shamsuddin, S.M.: Probabilistic evolving spiking neural network optimization using dynamic quantum-inspired particle swarm optimization. Aust. J. Intell. Inf. Process. Syst. 11(1), 23–28 (2010) Hamed, H.N.A., Kasabov, N., Shamsuddin, S.M.: Probabilistic evolving spiking neural network optimization using dynamic quantum-inspired particle swarm optimization. Aust. J. Intell. Inf. Process. Syst. 11(1), 23–28 (2010)
10.
Zurück zum Zitat Schliebs, S., Defoin-Platel, M., Worner, S., Kasabov, N.: Integrated feature and parameter optimization for an evolving spiking neural network: exploring heterogeneous probabilistic models. Neural Netw. 22(5), 623–632 (2009)CrossRef Schliebs, S., Defoin-Platel, M., Worner, S., Kasabov, N.: Integrated feature and parameter optimization for an evolving spiking neural network: exploring heterogeneous probabilistic models. Neural Netw. 22(5), 623–632 (2009)CrossRef
11.
Zurück zum Zitat Kandias, M., Virvilis, N., Gritzalis, D.: The insider threat in cloud computing. In: International Workshop on Critical Information Infrastructures Security, pp. 93–103. Springer, Berlin (2011) Kandias, M., Virvilis, N., Gritzalis, D.: The insider threat in cloud computing. In: International Workshop on Critical Information Infrastructures Security, pp. 93–103. Springer, Berlin (2011)
12.
Zurück zum Zitat Almomani, A., Alauthman, M., Albalas, F., Dorgham, O., Obeidat, A.: An online intrusion detection system to cloud computing based on NeuCube algorithms. Int. J. Cloud Appl. Comput. (IJCAC) 8(2), 96–112 (2018) Almomani, A., Alauthman, M., Albalas, F., Dorgham, O., Obeidat, A.: An online intrusion detection system to cloud computing based on NeuCube algorithms. Int. J. Cloud Appl. Comput. (IJCAC) 8(2), 96–112 (2018)
13.
Zurück zum Zitat Chadha, A., Abbas, A., Andreopoulos, Y.: Video Classification with CNNs: Using the Codec as a Spatio-Temporal Activity Sensor. arXiv preprint. arXiv:1710.05112 (2017) Chadha, A., Abbas, A., Andreopoulos, Y.: Video Classification with CNNs: Using the Codec as a Spatio-Temporal Activity Sensor. arXiv preprint. arXiv:​1710.​05112 (2017)
14.
Zurück zum Zitat Martinelli, E., D’Amico, A., Di Natale, C.: Spike encoding of artificial olfactory sensor signals. Sensors Actuators B 119(1), 234–238 (2006)CrossRef Martinelli, E., D’Amico, A., Di Natale, C.: Spike encoding of artificial olfactory sensor signals. Sensors Actuators B 119(1), 234–238 (2006)CrossRef
15.
Zurück zum Zitat Loiselle, S., Rouat, J., Pressnitzer, D., Thorpe, S.: Exploration of rank order coding with spiking neural networks for speech recognition. In: Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN’05), pp. 2076–2080. IEEE, Montreal (2005) Loiselle, S., Rouat, J., Pressnitzer, D., Thorpe, S.: Exploration of rank order coding with spiking neural networks for speech recognition. In: Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN’05), pp. 2076–2080. IEEE, Montreal (2005)
16.
Zurück zum Zitat Eurich, C.W., Wilke, S.D.: Multidimensional encoding strategy of spiking neurons. Neural Comput. 12(7), 1519–1529 (2000)CrossRef Eurich, C.W., Wilke, S.D.: Multidimensional encoding strategy of spiking neurons. Neural Comput. 12(7), 1519–1529 (2000)CrossRef
17.
Zurück zum Zitat Van Rullen, R., Thorpe, S.J.: Neural Comput. Neural Comput. 13(6), 1255–1283 (2001)CrossRef Van Rullen, R., Thorpe, S.J.: Neural Comput. Neural Comput. 13(6), 1255–1283 (2001)CrossRef
18.
Zurück zum Zitat Hopfield, J.J.: Pattern recognition computation using action potential timing for stimulus representation. Nature 376(6535), 33–36 (1995)CrossRef Hopfield, J.J.: Pattern recognition computation using action potential timing for stimulus representation. Nature 376(6535), 33–36 (1995)CrossRef
19.
20.
Zurück zum Zitat Maass, W.: Computing with spiking neurons. In: Maass, W., Bishop, C.M. (eds.) Pulsed Neural Networks, pp. 55–85. MIT, Cambridge (1999) Maass, W.: Computing with spiking neurons. In: Maass, W., Bishop, C.M. (eds.) Pulsed Neural Networks, pp. 55–85. MIT, Cambridge (1999)
21.
Zurück zum Zitat Belatreche, A., Maguire, L.P., McGinnity, M.: Advances in design and application of spiking neural networks. Soft. Comput. 11(3), 239–248 (2007)CrossRef Belatreche, A., Maguire, L.P., McGinnity, M.: Advances in design and application of spiking neural networks. Soft. Comput. 11(3), 239–248 (2007)CrossRef
22.
Zurück zum Zitat Brody, C.D., Hopfield, J.: Simple networks for spike-timing based computation. Neuron 37, 843–852 (2003)CrossRef Brody, C.D., Hopfield, J.: Simple networks for spike-timing based computation. Neuron 37, 843–852 (2003)CrossRef
23.
Zurück zum Zitat Booij, O., tat Nguyen, H.: A gradient descent rule for spiking neurons emitting multiple spikes. Inf. Process. Lett. 95(6), 552–558 (2005)MathSciNetMATHCrossRef Booij, O., tat Nguyen, H.: A gradient descent rule for spiking neurons emitting multiple spikes. Inf. Process. Lett. 95(6), 552–558 (2005)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Bohte, S.M., La Poutré, H., Kok, J.N.: Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans. Neural Netw. 13(2), 426–435 (2002)CrossRef Bohte, S.M., La Poutré, H., Kok, J.N.: Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans. Neural Netw. 13(2), 426–435 (2002)CrossRef
25.
Zurück zum Zitat Maguire, L.P., McGinnity, T.M., Glackin, B., Ghani, A., Belatreche, A., Harkin, J.: Challenges for large-scale implementations of spiking neural networks on FPGAs. Neurocomputing 71(1), 13–29 (2007)CrossRef Maguire, L.P., McGinnity, T.M., Glackin, B., Ghani, A., Belatreche, A., Harkin, J.: Challenges for large-scale implementations of spiking neural networks on FPGAs. Neurocomputing 71(1), 13–29 (2007)CrossRef
26.
Zurück zum Zitat Zuppicich, A., Soltic, S.: FPGA implementation of an evolving spiking neural network. In: International Conference on Neural Information Processing, pp. 1129–1136. Springer, Berlin (2008) Zuppicich, A., Soltic, S.: FPGA implementation of an evolving spiking neural network. In: International Conference on Neural Information Processing, pp. 1129–1136. Springer, Berlin (2008)
27.
Zurück zum Zitat Dhoble, K.: Spatio-/spectro-temporal pattern recognition using evolving probabilistic spiking neural networks. Auckland University of Technology, Auckland (2013) Dhoble, K.: Spatio-/spectro-temporal pattern recognition using evolving probabilistic spiking neural networks. Auckland University of Technology, Auckland (2013)
28.
Zurück zum Zitat Dayan, P., Abbott, L.F.: Theoretical Neuroscience, vol. 806. MIT, Cambridge (2001)MATH Dayan, P., Abbott, L.F.: Theoretical Neuroscience, vol. 806. MIT, Cambridge (2001)MATH
29.
Zurück zum Zitat Gabbiani, F., Metzner, W.: Encoding and processing of sensory information in neuronal spike trains. J. Exp. Biol. 202(10), 1267–1279 (1999) Gabbiani, F., Metzner, W.: Encoding and processing of sensory information in neuronal spike trains. J. Exp. Biol. 202(10), 1267–1279 (1999)
30.
Zurück zum Zitat Gabbiani, F.: Coding of time-varying signals in spike trains of linear and half-wave rectifying neurons. Netw. Comput. Neural Syst. 7(1), 61–85 (1996)MATH Gabbiani, F.: Coding of time-varying signals in spike trains of linear and half-wave rectifying neurons. Netw. Comput. Neural Syst. 7(1), 61–85 (1996)MATH
32.
Zurück zum Zitat Schrauwen, B., Van Campenhout, J.: BSA, a fast and accurate spike train encoding scheme. In: Proceedings of the International Joint Conference on Neural Networks, pp. 2825–2830. IEEE, Piscataway (2003) Schrauwen, B., Van Campenhout, J.: BSA, a fast and accurate spike train encoding scheme. In: Proceedings of the International Joint Conference on Neural Networks, pp. 2825–2830. IEEE, Piscataway (2003)
33.
Zurück zum Zitat Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)MATHCrossRef Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)MATHCrossRef
34.
Zurück zum Zitat Gerstner, W.: What is different with spiking neurons? In: Mastebroek, H.A.K., Vos, J.E. (eds.) Plausible Neural Networks for Biological Modelling, pp. 23–48. Springer, Dordrecht (2001)CrossRef Gerstner, W.: What is different with spiking neurons? In: Mastebroek, H.A.K., Vos, J.E. (eds.) Plausible Neural Networks for Biological Modelling, pp. 23–48. Springer, Dordrecht (2001)CrossRef
35.
Zurück zum Zitat Yu, Q., Tan, K.C., Tang, H.: Pattern recognition computation in a spiking neural network with temporal encoding and learning. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE, Granada (2012) Yu, Q., Tan, K.C., Tang, H.: Pattern recognition computation in a spiking neural network with temporal encoding and learning. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE, Granada (2012)
36.
Zurück zum Zitat Gross, C.G.: Genealogy of the “grandmother cell”. Neuroscientist 8(5), 512–518 (2002)CrossRef Gross, C.G.: Genealogy of the “grandmother cell”. Neuroscientist 8(5), 512–518 (2002)CrossRef
38.
Zurück zum Zitat Thorpe, S.J.: Grandmother cells and distributed representations. In: Visual Population Codes: Toward a Common Multivariate Framework for Cell Recording and Functional Imaging, pp. 23–51. MIT, Cambridge (2011) Thorpe, S.J.: Grandmother cells and distributed representations. In: Visual Population Codes: Toward a Common Multivariate Framework for Cell Recording and Functional Imaging, pp. 23–51. MIT, Cambridge (2011)
39.
Zurück zum Zitat Cruz, B., Gupta, D., Kapoor, A., Haifei, L., McLean, D., Moreno, F.: McAfee Labs Threats Report. McAfee, Santa Clara (2016) Cruz, B., Gupta, D., Kapoor, A., Haifei, L., McLean, D., Moreno, F.: McAfee Labs Threats Report. McAfee, Santa Clara (2016)
40.
Zurück zum Zitat Meftah, B., Lézoray, O., Chaturvedi, S., Khurshid, A.A., Benyettou, A.: Image processing with spiking neuron networks. In: Yang, X.-S. (ed.) Artificial Intelligence, Evolutionary Computing and Metaheuristics: In the Footsteps of Alan Turing, pp. 525–544. Springer, Berlin (2013)CrossRef Meftah, B., Lézoray, O., Chaturvedi, S., Khurshid, A.A., Benyettou, A.: Image processing with spiking neuron networks. In: Yang, X.-S. (ed.) Artificial Intelligence, Evolutionary Computing and Metaheuristics: In the Footsteps of Alan Turing, pp. 525–544. Springer, Berlin (2013)CrossRef
41.
Zurück zum Zitat Szatmáry, B., Izhikevich, E.M.: Spike-timing theory of working memory. PLoS Comput. Biol. 6(8), e1000879 (2010)MathSciNetCrossRef Szatmáry, B., Izhikevich, E.M.: Spike-timing theory of working memory. PLoS Comput. Biol. 6(8), e1000879 (2010)MathSciNetCrossRef
42.
Zurück zum Zitat Kiselev, M.: Rate coding vs. temporal coding-is optimum between? In: IEEE 2016 International Joint Conference on Neural Networks (IJCNN), pp. 1355–1359 (2016) Kiselev, M.: Rate coding vs. temporal coding-is optimum between? In: IEEE 2016 International Joint Conference on Neural Networks (IJCNN), pp. 1355–1359 (2016)
43.
Zurück zum Zitat Dhilipan, A., Preethi, J., Sreeshakthy, M., Sangeetha, V.: A survey on pattern recognition using spiking neural networks with temporal encoding and learning. Int. J. Res. Advent Technol. 2(11), 121–125 (2014) Dhilipan, A., Preethi, J., Sreeshakthy, M., Sangeetha, V.: A survey on pattern recognition using spiking neural networks with temporal encoding and learning. Int. J. Res. Advent Technol. 2(11), 121–125 (2014)
44.
Zurück zum Zitat Dayan, P., Abbott, L.: Theoretical neuroscience: computational and mathematical modeling of neural systems. J. Cogn. Neurosci. 15(1), 154–155 (2003)CrossRef Dayan, P., Abbott, L.: Theoretical neuroscience: computational and mathematical modeling of neural systems. J. Cogn. Neurosci. 15(1), 154–155 (2003)CrossRef
45.
Zurück zum Zitat Du, D., Odame, K.: An energy-efficient spike encoding circuit for speech edge detection. Analog Integr. Circuits Signal Process. 75(3), 447–458 (2013)CrossRef Du, D., Odame, K.: An energy-efficient spike encoding circuit for speech edge detection. Analog Integr. Circuits Signal Process. 75(3), 447–458 (2013)CrossRef
46.
Zurück zum Zitat Martens, M.B., Houweling, A.R., Tiesinga, P.H.: Anti-correlations in the degree distribution increase stimulus detection performance in noisy spiking neural networks. J. Comput. Neurosci. 42(1), 87–106 (2017)CrossRef Martens, M.B., Houweling, A.R., Tiesinga, P.H.: Anti-correlations in the degree distribution increase stimulus detection performance in noisy spiking neural networks. J. Comput. Neurosci. 42(1), 87–106 (2017)CrossRef
48.
Zurück zum Zitat Paugam-Moisy, H., Bohte, S.: Computing with spiking neuron networks. In: Handbook of Natural Computing, pp. 335–376. Springer, Heidelberg (2012) Paugam-Moisy, H., Bohte, S.: Computing with spiking neuron networks. In: Handbook of Natural Computing, pp. 335–376. Springer, Heidelberg (2012)
49.
Zurück zum Zitat Yu, Q., Tang, H., Hu, J., Tan, K.C.: Rapid feedforward computation by temporal encoding and learning with spiking neurons. In: Neuromorphic Cognitive Systems, pp. 19–41. Springer, Berlin (2017) Yu, Q., Tang, H., Hu, J., Tan, K.C.: Rapid feedforward computation by temporal encoding and learning with spiking neurons. In: Neuromorphic Cognitive Systems, pp. 19–41. Springer, Berlin (2017)
50.
Zurück zum Zitat Gardner, B., Grüning, A.: Supervised learning in spiking neural networks for precise temporal encoding. PLoS ONE 11(8), e0161335 (2016)CrossRef Gardner, B., Grüning, A.: Supervised learning in spiking neural networks for precise temporal encoding. PLoS ONE 11(8), e0161335 (2016)CrossRef
51.
Zurück zum Zitat Ahn, S., Lee, B., Kim, M.: A novel fast CU encoding scheme based on spatiotemporal encoding parameters for HEVC inter coding. IEEE Trans. Circuits Syst. Video Technol. 25(3), 422–435 (2015)CrossRef Ahn, S., Lee, B., Kim, M.: A novel fast CU encoding scheme based on spatiotemporal encoding parameters for HEVC inter coding. IEEE Trans. Circuits Syst. Video Technol. 25(3), 422–435 (2015)CrossRef
52.
Zurück zum Zitat Thorpe, S., Gautrais, J.: Rank Order Coding. In: Bower, J.M. (ed.) Computational Neuroscience: Trends in Research, pp. 113–118. Springer, Boston (1998)CrossRef Thorpe, S., Gautrais, J.: Rank Order Coding. In: Bower, J.M. (ed.) Computational Neuroscience: Trends in Research, pp. 113–118. Springer, Boston (1998)CrossRef
54.
Zurück zum Zitat Delbruck, T., Lichtsteiner, P.: Fast sensory motor control based on event-based hybrid neuromorphic-procedural system. In: IEEE International Symposium on Circuits and Systems (ISCAS 2007), pp. 845–848. IEEE, Lausanne (2007) Delbruck, T., Lichtsteiner, P.: Fast sensory motor control based on event-based hybrid neuromorphic-procedural system. In: IEEE International Symposium on Circuits and Systems (ISCAS 2007), pp. 845–848. IEEE, Lausanne (2007)
55.
Zurück zum Zitat Delorme, A., Perrinet, L., Thorpe, S.J.: Networks of integrate-and-fire neurons using Rank Order Coding B: spike timing dependent plasticity and emergence of orientation selectivity. Neurocomputing 38, 539–545 (2001)CrossRef Delorme, A., Perrinet, L., Thorpe, S.J.: Networks of integrate-and-fire neurons using Rank Order Coding B: spike timing dependent plasticity and emergence of orientation selectivity. Neurocomputing 38, 539–545 (2001)CrossRef
56.
Zurück zum Zitat Delorme, A., Thorpe, S.J.: Face identification using one spike per neuron: resistance to image degradations. Neural Netw. 14(6), 795–803 (2001)CrossRef Delorme, A., Thorpe, S.J.: Face identification using one spike per neuron: resistance to image degradations. Neural Netw. 14(6), 795–803 (2001)CrossRef
57.
Zurück zum Zitat Wysoski, S.G., Benuskova, L., Kasabov, N.: Evolving spiking neural networks for audiovisual information processing. Neural Netw. 23(7), 819–835 (2010)CrossRef Wysoski, S.G., Benuskova, L., Kasabov, N.: Evolving spiking neural networks for audiovisual information processing. Neural Netw. 23(7), 819–835 (2010)CrossRef
58.
Zurück zum Zitat Thangamalar, C., Elakkani, M., Mekala, V.: Secure ranked multi keyword hierarchical search arrangement over encoded cloud data. Int. J. Eng. Tech. 3(6), 504–506 (2017) Thangamalar, C., Elakkani, M., Mekala, V.: Secure ranked multi keyword hierarchical search arrangement over encoded cloud data. Int. J. Eng. Tech. 3(6), 504–506 (2017)
59.
Zurück zum Zitat Hough, M., De Garis, H., Korkin, M., Gers, F., Nawa, N.E.: Spiker: Analog waveform to digital spiketrain conversion in ATR’s artificial brain (cam-brain) project. In: International Conference on Robotics and Artificial Life (1999) Hough, M., De Garis, H., Korkin, M., Gers, F., Nawa, N.E.: Spiker: Analog waveform to digital spiketrain conversion in ATR’s artificial brain (cam-brain) project. In: International Conference on Robotics and Artificial Life (1999)
60.
Zurück zum Zitat Korkin, M., Fehr, G., Jeffery, G.: Evolving hardware on a large scale. In: IEEE Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware, pp. 173–181 (2000) Korkin, M., Fehr, G., Jeffery, G.: Evolving hardware on a large scale. In: IEEE Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware, pp. 173–181 (2000)
61.
Zurück zum Zitat Schrauwen, B., Campenhout, J.V.: BSA, a fast and accurate spike train encoding scheme. In: Proceedings of the International Joint Conference on Neural Networks, vol. 2824, 20–24 July 2003, pp. 2825–2830 (2003) Schrauwen, B., Campenhout, J.V.: BSA, a fast and accurate spike train encoding scheme. In: Proceedings of the International Joint Conference on Neural Networks, vol. 2824, 20–24 July 2003, pp. 2825–2830 (2003)
62.
Zurück zum Zitat Valadez, S., Sossa, H., Santiago-Montero, R., Guevara, E.: Encoding polysomnographic signals into spike firing rate for sleep staging. In: Mexican Conference on Pattern Recognition, pp. 282–291. Springer, Cham (2015) Valadez, S., Sossa, H., Santiago-Montero, R., Guevara, E.: Encoding polysomnographic signals into spike firing rate for sleep staging. In: Mexican Conference on Pattern Recognition, pp. 282–291. Springer, Cham (2015)
64.
Zurück zum Zitat Yu, Q., Tang, H., Tan, K.C., Yu, H.: A brain-inspired spiking neural network model with temporal encoding and learning. Neurocomputing 138, 3–13 (2014)CrossRef Yu, Q., Tang, H., Tan, K.C., Yu, H.: A brain-inspired spiking neural network model with temporal encoding and learning. Neurocomputing 138, 3–13 (2014)CrossRef
65.
Zurück zum Zitat Tait, A.N., Nahmias, M.A., Tian, Y., Shastri, B.J., Prucnal, P.R.: Photonic neuromorphic signal processing and computing. In: Naruse, M. (ed.) Nanophotonic Information Physics. Springer, Berlin (2014) Tait, A.N., Nahmias, M.A., Tian, Y., Shastri, B.J., Prucnal, P.R.: Photonic neuromorphic signal processing and computing. In: Naruse, M. (ed.) Nanophotonic Information Physics. Springer, Berlin (2014)
66.
Zurück zum Zitat Lichtsteiner, P., Delbruck, T.: A 64 × 64 AER logarithmic temporal derivative silicon retina. In: Research in Microelectronics and Electronics, 2005 PhD, pp. 202–205. IEEE (2005) Lichtsteiner, P., Delbruck, T.: A 64 × 64 AER logarithmic temporal derivative silicon retina. In: Research in Microelectronics and Electronics, 2005 PhD, pp. 202–205. IEEE (2005)
69.
Zurück zum Zitat van der Meer, M.A., Carey, A.A., Tanaka, Y.: Optimizing for generalization in the decoding of internally generated activity in the hippocampus. Hippocampus 27(5), 580–595 (2017)CrossRef van der Meer, M.A., Carey, A.A., Tanaka, Y.: Optimizing for generalization in the decoding of internally generated activity in the hippocampus. Hippocampus 27(5), 580–595 (2017)CrossRef
70.
Zurück zum Zitat Ray, S., Heinen, S.J.: A mechanism for decision rule discrimination by supplementary eye field neurons. Exp. Brain Res. 233(2), 459–476 (2015)CrossRef Ray, S., Heinen, S.J.: A mechanism for decision rule discrimination by supplementary eye field neurons. Exp. Brain Res. 233(2), 459–476 (2015)CrossRef
71.
Zurück zum Zitat Torikai, H., Nishigami, T.: A novel chaotic spiking neuron and its paralleled spike encoding function. In: 2009 International Joint Conference on Neural Networks (IJCNN 2009), pp. 3132–3139. IEEE Torikai, H., Nishigami, T.: A novel chaotic spiking neuron and its paralleled spike encoding function. In: 2009 International Joint Conference on Neural Networks (IJCNN 2009), pp. 3132–3139. IEEE
74.
Zurück zum Zitat Kasabov, N., Scott, N.M., Tu, E., Marks, S., Sengupta, N., Capecci, E., Othman, M., Doborjeh, M.G., Murli, N., Hartono, R.: Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: design methodology and selected applications. Neural Netw. 78, 1–14 (2016)MATHCrossRef Kasabov, N., Scott, N.M., Tu, E., Marks, S., Sengupta, N., Capecci, E., Othman, M., Doborjeh, M.G., Murli, N., Hartono, R.: Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: design methodology and selected applications. Neural Netw. 78, 1–14 (2016)MATHCrossRef
Metadaten
Titel
A comparative study on spiking neural network encoding schema: implemented with cloud computing
verfasst von
Ammar Almomani
Mohammad Alauthman
Mohammed Alweshah
O. Dorgham
Firas Albalas
Publikationsdatum
16.01.2019
Verlag
Springer US
Erschienen in
Cluster Computing / Ausgabe 2/2019
Print ISSN: 1386-7857
Elektronische ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-018-02891-0

Weitere Artikel der Ausgabe 2/2019

Cluster Computing 2/2019 Zur Ausgabe

Premium Partner