Skip to main content
Erschienen in: Wireless Personal Communications 4/2015

01.12.2015

A Comprehensive Analysis of Spectrum Handoff Under Different Distribution Models for Cognitive Radio Networks

verfasst von: Wasim Arif, Shanidul Hoque, Debarati Sen, Srimanta Baishya

Erschienen in: Wireless Personal Communications | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The static frequency allocation in wireless communication became a major concern for efficient spectrum utilization. Also due to spatio-temporal variation, some of the frequency channels are not utilized efficiently. The prologue of open spectrum and dynamic spectrum access (DSA) methodology provides the secondary (unlicensed) users, supported by cognitive radios (CRs) to opportunistically utilize the unused spectrum bands. When a primary user returns to the engaged spectrum band, secondary users should release it immediately through proper handing off to another spectrum band available to the network satisfying the quality of service (QoS) of both the network. Hence the focus of the new spectrum management policies is DSA technology based on CR. Spectrum mobility is considered to be the subsequent big challenge in CR technology. Spectrum mobility is associated with spectrum handoff which is directly associated with link maintenance and QoS. In this paper, we scrupulously investigate and analyze the probability of spectrum handoff under diverse realistic primary and secondary user traffic models. We have established a state of the art standard generalized form of probability of spectrum handoff without switching delay considering secondary user call duration and residual time of availability of spectrum holes as measurement metrics for diverse distribution functions designed for tele-traffic analysis. We thoroughly investigate different distribution models for the residual time under both zero switching delay and finite switching delay conditions. The switching delay (t r ) between spectrum holes comprises of spectrum sensing time and transition delay for realizing all the related parameters. A comprehensive simulation results are presented to validate the generalized theory established in this paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Federal Communications Commission (FCC). (2003). Notice for proposed rulemaking (NPRM 03 322): Facilitating opportunities for flexible, efficient, and reliable spectrum use employing spectrum agile radio technologies. ET Docket No. 03 108, December 2003. Federal Communications Commission (FCC). (2003). Notice for proposed rulemaking (NPRM 03 322): Facilitating opportunities for flexible, efficient, and reliable spectrum use employing spectrum agile radio technologies. ET Docket No. 03 108, December 2003.
3.
Zurück zum Zitat Mitola, J., III, & Maguire, G. Q., Jr. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communication Magazines, 6(4), 13–18.CrossRef Mitola, J., III, & Maguire, G. Q., Jr. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communication Magazines, 6(4), 13–18.CrossRef
4.
Zurück zum Zitat Akyildiz, F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks—A survey. Computer Networks, 50(13), 2127–2159.CrossRefMATH Akyildiz, F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks—A survey. Computer Networks, 50(13), 2127–2159.CrossRefMATH
5.
Zurück zum Zitat Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23, 201–220.CrossRef Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23, 201–220.CrossRef
6.
Zurück zum Zitat Jondral, F. K. (2005). Software-defined radio-basics and evolution to cognitive radio. EURASIP Journal on Wireless Communications and Networking, 3, 275–283. Jondral, F. K. (2005). Software-defined radio-basics and evolution to cognitive radio. EURASIP Journal on Wireless Communications and Networking, 3, 275–283.
7.
Zurück zum Zitat Tandra, R., & Sahai, A. (2008). SNR walls for signal detection. IEEE Journal of Selected Topics in Signal Processing, 2(1), 4–17.CrossRef Tandra, R., & Sahai, A. (2008). SNR walls for signal detection. IEEE Journal of Selected Topics in Signal Processing, 2(1), 4–17.CrossRef
8.
Zurück zum Zitat Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communications, 4(1), 40–62.CrossRef Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communications, 4(1), 40–62.CrossRef
9.
Zurück zum Zitat Christian, I., Moh, Sn., Chung, I., & Lee, J. (2012). Spectrum mobility in cognitive radio networks. IEEE Communications Magazine, 50(6), 114–121.CrossRef Christian, I., Moh, Sn., Chung, I., & Lee, J. (2012). Spectrum mobility in cognitive radio networks. IEEE Communications Magazine, 50(6), 114–121.CrossRef
10.
Zurück zum Zitat Del Re, E., Fantacci, R., & Giambene, G. (1995). Handover and dynamic channel allocation techniques in mobile cellular networks. IEEE Transaction on Vehicular Technology, 44(2), 229–237.CrossRef Del Re, E., Fantacci, R., & Giambene, G. (1995). Handover and dynamic channel allocation techniques in mobile cellular networks. IEEE Transaction on Vehicular Technology, 44(2), 229–237.CrossRef
11.
Zurück zum Zitat Del Re, E., Fantacci, R., & Giambene, G. (1995). Efficient dynamic channel allocation techniques with handover queuing for mobile satellite networks. IEEE Journal on Selected Areas Communications, 13(2), 397–405.CrossRef Del Re, E., Fantacci, R., & Giambene, G. (1995). Efficient dynamic channel allocation techniques with handover queuing for mobile satellite networks. IEEE Journal on Selected Areas Communications, 13(2), 397–405.CrossRef
12.
Zurück zum Zitat Hong, D., & Rappaport, S. S. (1986). Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and non-prioritized handoff procedures. IEEE Transactions on Vehicular Technology, 35(3), 77–92.CrossRef Hong, D., & Rappaport, S. S. (1986). Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and non-prioritized handoff procedures. IEEE Transactions on Vehicular Technology, 35(3), 77–92.CrossRef
13.
Zurück zum Zitat Lin, Y. B., Mohan, S., & Noerpel, A. (1994). Queuing priority channel assignment strategies for handoff and initial access for a PCS network. IEEE Transactions on Vehicular Technology, 43(3), 704–712.CrossRef Lin, Y. B., Mohan, S., & Noerpel, A. (1994). Queuing priority channel assignment strategies for handoff and initial access for a PCS network. IEEE Transactions on Vehicular Technology, 43(3), 704–712.CrossRef
14.
Zurück zum Zitat Yum, T. S., & Yeung, K. L. (1995). Blocking and handoff performance analysis of directed retry in cellular mobile systems. IEEE Transactions on Vehicular Technology, 44(3), 645–650.CrossRef Yum, T. S., & Yeung, K. L. (1995). Blocking and handoff performance analysis of directed retry in cellular mobile systems. IEEE Transactions on Vehicular Technology, 44(3), 645–650.CrossRef
15.
Zurück zum Zitat Bolotin, V. A. (1994). Modeling call holding time distributions for CCS network design and performance analysis. IEEE Journal on Selected Areas in Communications, 12(3), 433–438.CrossRef Bolotin, V. A. (1994). Modeling call holding time distributions for CCS network design and performance analysis. IEEE Journal on Selected Areas in Communications, 12(3), 433–438.CrossRef
16.
Zurück zum Zitat Liu, H, Wang, Z., Li, S., & Yi, M. (2008). Study on the performance of spectrum mobility in cognitive wireless network. In Hi-Tech Research and Development Program of China (pp. 1010–1014). Liu, H, Wang, Z., Li, S., & Yi, M. (2008). Study on the performance of spectrum mobility in cognitive wireless network. In Hi-Tech Research and Development Program of China (pp. 1010–1014).
17.
Zurück zum Zitat Barcelò, F., & Jordan, J. (1999). Channel holding time distribution in public telephony system. In Proceedings of 16th international tele-traffic congress (pp. 107–116). Elsevier Science. Barcelò, F., & Jordan, J. (1999). Channel holding time distribution in public telephony system. In Proceedings of 16th international tele-traffic congress (pp. 107–116). Elsevier Science.
18.
Zurück zum Zitat Barcelò, F., & Jordan, J. (2000). Channel holding time distribution in public telephony system (PAMR and PCS). IEEE Transactions on Vehicular Technology, 49(5), 1615–1625.CrossRef Barcelò, F., & Jordan, J. (2000). Channel holding time distribution in public telephony system (PAMR and PCS). IEEE Transactions on Vehicular Technology, 49(5), 1615–1625.CrossRef
19.
Zurück zum Zitat Pattavina, A., & Parini, A. (2005). Modelling voice call interarrival and holding time distributions in mobile networks. In Proceedings of the 19th International Teletraffic Congress (ITC’05) (pp. 729–738). Pattavina, A., & Parini, A. (2005). Modelling voice call interarrival and holding time distributions in mobile networks. In Proceedings of the 19th International Teletraffic Congress (ITC’05) (pp. 729–738).
20.
Zurück zum Zitat Zhang, Y. (2009). Spectrum handoff in cognitive radio networks: Opportunistic and negotiated situations. In Proceedings of IEEE ICC 2009 (vol. 1, no. 6, pp. 14–18). doi:10.1109/ICC.2009.5199479. Zhang, Y. (2009). Spectrum handoff in cognitive radio networks: Opportunistic and negotiated situations. In Proceedings of IEEE ICC 2009 (vol. 1, no. 6, pp. 14–18). doi:10.​1109/​ICC.​2009.​5199479.
21.
Zurück zum Zitat Shoja-Sefat, A., Beheshti, M. T. H., & Moradi, H. (2007). A new statistical model for call holding time simulation in the telephony networks. In Proceedings of IEEE International Conference on Signal Processing and Communications (vol. 1359, no. 1362, pp. 24–27). Shoja-Sefat, A., Beheshti, M. T. H., & Moradi, H. (2007). A new statistical model for call holding time simulation in the telephony networks. In Proceedings of IEEE International Conference on Signal Processing and Communications (vol. 1359, no. 1362, pp. 24–27).
22.
Zurück zum Zitat Lin, Y. B., & Chlamtac, I. (1999). Effects of Erlang call holding times on PCS call completion. IEEE Transactions on Vehicular Technology, 48(3), 815–823.CrossRef Lin, Y. B., & Chlamtac, I. (1999). Effects of Erlang call holding times on PCS call completion. IEEE Transactions on Vehicular Technology, 48(3), 815–823.CrossRef
23.
Zurück zum Zitat Sánchez, J. I., Barceló, F., & Jordán, J. (1998). Inter arrival time distribution for channel arrivals in cellular telephony. In Proceedings of 5th international workshop on mobile multimedia communication, MoMuc’98 (pp. 245–254). Berlin. Sánchez, J. I., Barceló, F., & Jordán, J. (1998). Inter arrival time distribution for channel arrivals in cellular telephony. In Proceedings of 5th international workshop on mobile multimedia communication, MoMuc’98 (pp. 245–254). Berlin.
24.
Zurück zum Zitat Jedrzycky, C., & Leung, V. C. M. (1996). Probability distribution of channel holding time in cellular telephony system. In Proceedings of IEEE vehicular technology conference (pp. 247–251). Atlanta, GA. Jedrzycky, C., & Leung, V. C. M. (1996). Probability distribution of channel holding time in cellular telephony system. In Proceedings of IEEE vehicular technology conference (pp. 247–251). Atlanta, GA.
25.
Zurück zum Zitat Asmussen, S., Jensen, J. L., & Rojas-Nandayapa, L. (2014). On the Laplace transform of the lognormal distribution. Journal of Methodology and Computing in Applied Probability, 2014. ISSN: 1387-5841, Springer, US. doi:10.1007/s11009-014-9430-7. Asmussen, S., Jensen, J. L., & Rojas-Nandayapa, L. (2014). On the Laplace transform of the lognormal distribution. Journal of Methodology and Computing in Applied Probability, 2014. ISSN: 1387-5841, Springer, US. doi:10.​1007/​s11009-014-9430-7.
Metadaten
Titel
A Comprehensive Analysis of Spectrum Handoff Under Different Distribution Models for Cognitive Radio Networks
verfasst von
Wasim Arif
Shanidul Hoque
Debarati Sen
Srimanta Baishya
Publikationsdatum
01.12.2015
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2015
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-015-2918-9

Weitere Artikel der Ausgabe 4/2015

Wireless Personal Communications 4/2015 Zur Ausgabe

Neuer Inhalt