Skip to main content
Erschienen in: Neural Computing and Applications 7-8/2014

01.12.2014 | Original Article

A computational knowledge representation model for cognitive computers

Erschienen in: Neural Computing and Applications | Ausgabe 7-8/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The accumulating data are easy to store but the ability of understanding and using it does not keep track with its growth. So researches focus on the nature of knowledge processing in the mind. This paper proposes a semantic model (CKRMCC) based on cognitive aspects that enables cognitive computer to process the knowledge as the human mind and find a suitable representation of that knowledge. In cognitive computer, knowledge processing passes through three major stages: knowledge acquisition and encoding, knowledge representation, and knowledge inference and validation. The core of CKRMCC is knowledge representation, which in turn proceeds through four phases: prototype formation phase, discrimination phase, generalization phase, and algorithm development phase. Each of those phases is mathematically formulated using the notions of real-time process algebra. The performance efficiency of CKRMCC is evaluated using some datasets from the well-known UCI repository of machine learning datasets. The acquired datasets are divided into training and testing data that are encoded using concept matrix. Consequently, in the knowledge representation stage, a set of symbolic rule is derived to establish a suitable representation for the training datasets. This representation will be available in a usable form when it is needed in the future. The inference stage uses the rule set to obtain the classes of the encoded testing datasets. Finally, knowledge validation phase is validating and verifying the results of applying the rule set on testing datasets. The performances are compared with classification and regression tree and support vector machine and prove that CKRMCC has an efficient performance in representing the knowledge using symbolic rules.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, BelmontMATH Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, BelmontMATH
4.
Zurück zum Zitat Kushniruk AW (2001) Analysis of complex decision-making processes in health care: cognitive approaches to health informatics. J Biomed Inform 34(5):365–376CrossRef Kushniruk AW (2001) Analysis of complex decision-making processes in health care: cognitive approaches to health informatics. J Biomed Inform 34(5):365–376CrossRef
5.
Zurück zum Zitat Landa LN (1976) Instructional regulation and control: cybernetics, algorithmization, and heuristics in education, vol 5. Educational Technology, Englewood Cliffs Landa LN (1976) Instructional regulation and control: cybernetics, algorithmization, and heuristics in education, vol 5. Educational Technology, Englewood Cliffs
6.
Zurück zum Zitat Merrill MD, Tennyson RD, Posey LO (1992) Teaching concepts: an instructional design guide, vol 2. Educational Technology, Englewood Cliffs Merrill MD, Tennyson RD, Posey LO (1992) Teaching concepts: an instructional design guide, vol 2. Educational Technology, Englewood Cliffs
7.
Zurück zum Zitat Neumann VJ (1946) The principles of large-scale computing machines. Ann Hist Comput 3(3):263–273CrossRef Neumann VJ (1946) The principles of large-scale computing machines. Ann Hist Comput 3(3):263–273CrossRef
8.
Zurück zum Zitat Pescovitz D (2002) Autonomic computing: helping computers help themselves. IEEE Spectr 39(9):49–53CrossRef Pescovitz D (2002) Autonomic computing: helping computers help themselves. IEEE Spectr 39(9):49–53CrossRef
9.
Zurück zum Zitat Simon HA, Kaplan CA (1989) Foundations of cognitive science. In: Posner MI (ed) Foundations of cognitive science. MIT Press, Cambridge, pp 1–47 Simon HA, Kaplan CA (1989) Foundations of cognitive science. In: Posner MI (ed) Foundations of cognitive science. MIT Press, Cambridge, pp 1–47
10.
Zurück zum Zitat Smith EE (1989) Concepts and induction. In: Posner MI (ed) Foundations of cognitive science. MIT Press, Cambridge, pp 501–526 Smith EE (1989) Concepts and induction. In: Posner MI (ed) Foundations of cognitive science. MIT Press, Cambridge, pp 501–526
12.
Zurück zum Zitat Tian Y, Wang Y, Gavrilova LM, Ruhe G (2011) A formal knowledge representation system (FKRS) for the intelligent knowledge base of a cognitive learning engine. Int J Softw Sci Comput Intell 3(4):1–17CrossRef Tian Y, Wang Y, Gavrilova LM, Ruhe G (2011) A formal knowledge representation system (FKRS) for the intelligent knowledge base of a cognitive learning engine. Int J Softw Sci Comput Intell 3(4):1–17CrossRef
13.
14.
Zurück zum Zitat Wang Y (2002) Keynote: on cognitive informatics. In: Proceedings of the 1st IEEE international conference on cognitive informatics (ICCI 2002), Calgary, Canada, August. IEEE CS Press, Los Alamitos, pp 34–42 Wang Y (2002) Keynote: on cognitive informatics. In: Proceedings of the 1st IEEE international conference on cognitive informatics (ICCI 2002), Calgary, Canada, August. IEEE CS Press, Los Alamitos, pp 34–42
15.
16.
Zurück zum Zitat Wang Y (2003) Cognitive informatics: a new transdisciplinary research field. Brain Mind Transdiscipl J Neurosci Neurophilos 4:115–127 Wang Y (2003) Cognitive informatics: a new transdisciplinary research field. Brain Mind Transdiscipl J Neurosci Neurophilos 4:115–127
17.
Zurück zum Zitat Wang Y (2003) On cognitive informatics. Brain Mind Transdiscipl J Neurosci Neurophilos 4(2):151–167 Wang Y (2003) On cognitive informatics. Brain Mind Transdiscipl J Neurosci Neurophilos 4(2):151–167
18.
Zurück zum Zitat Wang Y (2003) Using process algebra to describe human and software behaviours. Brain Mind Transdiscipl J Neurosci Neurophilos 4(2):199–213 Wang Y (2003) Using process algebra to describe human and software behaviours. Brain Mind Transdiscipl J Neurosci Neurophilos 4(2):199–213
19.
Zurück zum Zitat Wang Y (2006) Keynote: cognitive informatics—towards the future generation computers that think and feel. In: Proceedings of the 5th IEEE international conference on cognitive informatics (ICCI ‘06), Beijing, China. IEEE CS Press, pp 3–7 Wang Y (2006) Keynote: cognitive informatics—towards the future generation computers that think and feel. In: Proceedings of the 5th IEEE international conference on cognitive informatics (ICCI ‘06), Beijing, China. IEEE CS Press, pp 3–7
20.
Zurück zum Zitat Wang Y (2007) The theoretical framework of cognitive informatics. Int J Cogn Inf Nat Intell 1(1):1–27CrossRef Wang Y (2007) The theoretical framework of cognitive informatics. Int J Cogn Inf Nat Intell 1(1):1–27CrossRef
21.
Zurück zum Zitat Wang Y (2007) Towards theoretical foundations of autonomic computing. Int J Cogn Inf Nat Intell 1(3):1–16CrossRef Wang Y (2007) Towards theoretical foundations of autonomic computing. Int J Cogn Inf Nat Intell 1(3):1–16CrossRef
22.
Zurück zum Zitat Wang Y (2008) On concept algebra, a denotational mathematical structure for knowledge and software modeling. Int J Cogn Inf Nat Intell 2:1–19CrossRef Wang Y (2008) On concept algebra, a denotational mathematical structure for knowledge and software modeling. Int J Cogn Inf Nat Intell 2:1–19CrossRef
23.
Zurück zum Zitat Wang Y (2008) On system algebra: a denotational mathematical structure for abstract systems, modeling. Int J Cogn Inf Nat Intell 2(2):20–43CrossRef Wang Y (2008) On system algebra: a denotational mathematical structure for abstract systems, modeling. Int J Cogn Inf Nat Intell 2(2):20–43CrossRef
24.
Zurück zum Zitat Wang Y (2008) RTPA: a denotational mathematics for manipulating intelligent and computational behaviors. Int J Cogn Inf Nat Intell 2(2):44–62CrossRef Wang Y (2008) RTPA: a denotational mathematics for manipulating intelligent and computational behaviors. Int J Cogn Inf Nat Intell 2(2):44–62CrossRef
25.
Zurück zum Zitat Wang Y (2008) Deductive semantics of RTPA. Int J Cogn Inf Nat Intell 2(2):95–121CrossRef Wang Y (2008) Deductive semantics of RTPA. Int J Cogn Inf Nat Intell 2(2):95–121CrossRef
26.
Zurück zum Zitat Wang Y (2008) On the big-R notation for describing iterative and recursive behaviors. Int J Cogn Inf Nat Intell 2(1):17–28CrossRef Wang Y (2008) On the big-R notation for describing iterative and recursive behaviors. Int J Cogn Inf Nat Intell 2(1):17–28CrossRef
27.
Zurück zum Zitat Wang Y (2008) on contemporary denotational mathematics for computational intelligence, transactions on computational science II. Lecture notes in computer science, vol 5150. Springer, pp 6–29 Wang Y (2008) on contemporary denotational mathematics for computational intelligence, transactions on computational science II. Lecture notes in computer science, vol 5150. Springer, pp 6–29
28.
29.
Zurück zum Zitat Wang Y (2009) On visual semantic algebra (VSA): a denotational mathematical structure for modeling and manipulating visual objects and patterns. Int J Cogn Inf Nat Intell 1(4):1–16CrossRefMATH Wang Y (2009) On visual semantic algebra (VSA): a denotational mathematical structure for modeling and manipulating visual objects and patterns. Int J Cogn Inf Nat Intell 1(4):1–16CrossRefMATH
30.
Zurück zum Zitat Wang Y (2011) Inference algebra (IA): a denotational mathematics for cognitive computing and machine reasoning (I). Int J Cogn Inf Nat Intell 5(4):61–82CrossRef Wang Y (2011) Inference algebra (IA): a denotational mathematics for cognitive computing and machine reasoning (I). Int J Cogn Inf Nat Intell 5(4):61–82CrossRef
31.
Zurück zum Zitat Wang Y (2009) Granular algebra for modeling granular systems and granular computing. IEEE Trans Syst Man Cybern Part B: Cybern 39(4):855–866CrossRef Wang Y (2009) Granular algebra for modeling granular systems and granular computing. IEEE Trans Syst Man Cybern Part B: Cybern 39(4):855–866CrossRef
32.
Zurück zum Zitat Wang Y, Zhang D, Tsumoto S (2009) Cognitive informatics, cognitive computing, and their denotational mathematical foundations (I). Fundam Inf 90(3):1–7 Wang Y, Zhang D, Tsumoto S (2009) Cognitive informatics, cognitive computing, and their denotational mathematical foundations (I). Fundam Inf 90(3):1–7
33.
Zurück zum Zitat Wang Y, Zhang D, Kinsner W (2010) Advances in the fields of cognitive informatics and cognitive computing, SCI 323. Springer, Berlin, pp 1–11 Wang Y, Zhang D, Kinsner W (2010) Advances in the fields of cognitive informatics and cognitive computing, SCI 323. Springer, Berlin, pp 1–11
34.
Zurück zum Zitat Wang Y, Pedrycz W, Baciu G, Chen P, Wang G, Yao Y (2010) Perspectives on cognitive computing and applications. Int J Cogn Inf Nat Intell 2(4):32–44 Wang Y, Pedrycz W, Baciu G, Chen P, Wang G, Yao Y (2010) Perspectives on cognitive computing and applications. Int J Cogn Inf Nat Intell 2(4):32–44
35.
Zurück zum Zitat Wang Y, Tian Y, Hu K (2011) The operational semantics of concept algebra for cognitive computing and machine learning. In: 10th IEEE international conference on cognitive informatics and cognitive computing (ICCI and CC), pp 49–58 Wang Y, Tian Y, Hu K (2011) The operational semantics of concept algebra for cognitive computing and machine learning. In: 10th IEEE international conference on cognitive informatics and cognitive computing (ICCI and CC), pp 49–58
37.
Zurück zum Zitat Wnek J, Sarma J, Wahab A, Michalski R (1991) Comparison learning paradigms via diagrammatic visualization: a case study in single concept learning using symbolic, neural net and genetic algorithm methods. Technical report, Computer Science Department, George Mason University Wnek J, Sarma J, Wahab A, Michalski R (1991) Comparison learning paradigms via diagrammatic visualization: a case study in single concept learning using symbolic, neural net and genetic algorithm methods. Technical report, Computer Science Department, George Mason University
Metadaten
Titel
A computational knowledge representation model for cognitive computers
Publikationsdatum
01.12.2014
Erschienen in
Neural Computing and Applications / Ausgabe 7-8/2014
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-014-1614-0

Weitere Artikel der Ausgabe 7-8/2014

Neural Computing and Applications 7-8/2014 Zur Ausgabe

Premium Partner