Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2007

01.06.2007

A computational model to link psychophysics and cortical cell activation patterns in human texture processing

verfasst von: A. Thielscher, H. Neumann

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2007

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The human visual system uses texture information to automatically, or pre-attentively, segregate parts of the visual scene. We investigate the neural substrate underlying human texture processing using a computational model that consists of a hierarchy of bi-directionally linked model areas. The model builds upon two key hypotheses, namely that (i) texture segregation is based on boundary detection—rather than clustering of homogeneous items—and (ii) texture boundaries are detected mainly on the basis of a large scenic context that is analyzed by higher cortical areas within the ventral visual pathway, such as area V4. Here, we focus on the interpretation of key results from psychophysical studies on human texture segmentation. In psychophysical studies, texture patterns were varied along several feature dimensions to systematically characterize human performance. We use simulations to demonstrate that the activation patterns of our model directly correlate with the psychophysical results. This allows us to identify the putative neural mechanisms and cortical key areas which underlie human behavior. In particular, we investigate (i) the effects of varying texture density on target saliency, and the impact of (ii) element alignment and (iii) orientation noise on the detectability of a pop-out bar. As a result, we demonstrate that the dependency of target saliency on texture density is linked to a putative receptive field organization of orientation-selective neurons in V4. The effect of texture element alignment is related to grouping mechanisms in early visual areas. Finally, the modulation of cell activity by feedback activation from higher model areas, interacting with mechanisms of intra-areal center-surround competition, is shown to result in the specific suppression of noise-related cell activities and to improve the overall model capabilities in texture segmentation. In particular, feedback interaction is crucial to raise the model performance to the level of human observers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Thielscher and Neumann (2003) also investigated direct feedforward/feedback interactions between localized model V1 and coarse-grained model V4 interaction in concert with and without the integrated action of model V2 to study the computational consequences of parametric variation of the relative strength of the V1–V4 coupling in comparison to V2–V4 coupling. Here, we did not conduct such an additional study for investigating the density effects since we wanted to keep the modeling as simple as possible already demonstrating the desired density effects in the strictly hierarchical V1–V2–V4 model.
 
Literatur
Zurück zum Zitat Bayerl P, Neumann H (2005) Feature-based attention increases the selectivity of population responses in a model of the primate visual cortex. In: Proceedings of the 6th Int’l Workshop Neural Coding 2005, Marburg (Germany), pp. 55–56. Bayerl P, Neumann H (2005) Feature-based attention increases the selectivity of population responses in a model of the primate visual cortex. In: Proceedings of the 6th Int’l Workshop Neural Coding 2005, Marburg (Germany), pp. 55–56.
Zurück zum Zitat Beck J (1982) Textural segmentation. In: J Beck, ed. Organization and representation in perception. Lawrence Erlbaum Associates, Hillsdale, pp. 285–317. Beck J (1982) Textural segmentation. In: J Beck, ed. Organization and representation in perception. Lawrence Erlbaum Associates, Hillsdale, pp. 285–317.
Zurück zum Zitat Bergen JR (1991) Theories of visual texture perception. In: D Regan, ed. Spatial vision, vol 10. Macmillan Press, pp. 115–134. Bergen JR (1991) Theories of visual texture perception. In: D Regan, ed. Spatial vision, vol 10. Macmillan Press, pp. 115–134.
Zurück zum Zitat Brodatz P (1999) Textures: A Photographic Album for Artists and Designers. Dover Publications. Brodatz P (1999) Textures: A Photographic Album for Artists and Designers. Dover Publications.
Zurück zum Zitat Cavanaugh JR, Bair W, Movshon JA (2002a) Nature and interaction of signals from the receptive field center and surround in Macaque V1 neurons. J. Neurophysiol. 88: 2530–2546.PubMedCrossRef Cavanaugh JR, Bair W, Movshon JA (2002a) Nature and interaction of signals from the receptive field center and surround in Macaque V1 neurons. J. Neurophysiol. 88: 2530–2546.PubMedCrossRef
Zurück zum Zitat Cavanaugh JR, Bair W, Movshon, JA (2002b) Selectivity and spatial distribution of signals from the receptive field surround in Macaque V1 neurons. J. Neurophysiol. 88: 2547–2556.PubMedCrossRef Cavanaugh JR, Bair W, Movshon, JA (2002b) Selectivity and spatial distribution of signals from the receptive field surround in Macaque V1 neurons. J. Neurophysiol. 88: 2547–2556.PubMedCrossRef
Zurück zum Zitat Crick F, Koch C (1998) Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 391: 245–250.PubMedCrossRef Crick F, Koch C (1998) Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 391: 245–250.PubMedCrossRef
Zurück zum Zitat de Weerd P, Desimone R, Ungerleider LG (1996) Cue-dependent deficits in grating orientation discrimination after V4 lesions in macaques. Vis. Neurosci. 13: 529–538.PubMed de Weerd P, Desimone R, Ungerleider LG (1996) Cue-dependent deficits in grating orientation discrimination after V4 lesions in macaques. Vis. Neurosci. 13: 529–538.PubMed
Zurück zum Zitat Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1990) Feature linking via synchronization among distributed assemblies: Simulation of results from cat visual cortex. Neural. Comput. 2: 293–307. Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1990) Feature linking via synchronization among distributed assemblies: Simulation of results from cat visual cortex. Neural. Comput. 2: 293–307.
Zurück zum Zitat Felleman DJ, van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1: 1–47.PubMedCrossRef Felleman DJ, van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1: 1–47.PubMedCrossRef
Zurück zum Zitat Finkel LH, Edelman GM (1989) Integration of distributed cortical systems by reentry: a computer simulation of interactive functionally segregated visual areas. J. Neurosci. 9: 3188–3208.PubMed Finkel LH, Edelman GM (1989) Integration of distributed cortical systems by reentry: a computer simulation of interactive functionally segregated visual areas. J. Neurosci. 9: 3188–3208.PubMed
Zurück zum Zitat Finkel LH, Sajda P (1992) Object discrimination based on depth-from-occulsion. Neural. Comput. 4: 901–921. Finkel LH, Sajda P (1992) Object discrimination based on depth-from-occulsion. Neural. Comput. 4: 901–921.
Zurück zum Zitat Gallant JL, van Essen DC, Nothdurft HC (1995) Two-dimensional and three-dimensional texture processing in visual cortex of the Macaque monkey. In: TV Papathomas ed. Early Vision and Beyond. The MIT Press, Cambridge. Gallant JL, van Essen DC, Nothdurft HC (1995) Two-dimensional and three-dimensional texture processing in visual cortex of the Macaque monkey. In: TV Papathomas ed. Early Vision and Beyond. The MIT Press, Cambridge.
Zurück zum Zitat Gilbert CD, Wiesel TN (1989) Columnar specificity of intrinisic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9: 2432–2442.PubMed Gilbert CD, Wiesel TN (1989) Columnar specificity of intrinisic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9: 2432–2442.PubMed
Zurück zum Zitat Girard P, Hupe JM, Bullier J (2001) Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J. Neurophysiol. 85: 1328–1331.PubMed Girard P, Hupe JM, Bullier J (2001) Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J. Neurophysiol. 85: 1328–1331.PubMed
Zurück zum Zitat Graham N, Sutter A, Venkatesan C (1993) Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation. Vis. Res. 33: 1893–1911.PubMedCrossRef Graham N, Sutter A, Venkatesan C (1993) Spatial-frequency- and orientation-selectivity of simple and complex channels in region segregation. Vis. Res. 33: 1893–1911.PubMedCrossRef
Zurück zum Zitat Grossberg S, Mingolla E (1985) Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations. Percept. Psychophys. 38: 141–171.PubMed Grossberg S, Mingolla E (1985) Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations. Percept. Psychophys. 38: 141–171.PubMed
Zurück zum Zitat Grossberg S, Raizada RDS (2000) Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex. Vis. Res. 40: 1413–1432.PubMedCrossRef Grossberg S, Raizada RDS (2000) Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex. Vis. Res. 40: 1413–1432.PubMedCrossRef
Zurück zum Zitat Hansen T, Neumann H (2004) Neural mechanisms for the robust representation of junctions. Neural Comput. 16: 1013–1037.PubMedCrossRef Hansen T, Neumann H (2004) Neural mechanisms for the robust representation of junctions. Neural Comput. 16: 1013–1037.PubMedCrossRef
Zurück zum Zitat Heitger F, v.d. Heydt R, Peterhans E, Rosenthaler L, Kübler O (1998) Simulation of neural contour mechanisms: Representing anomalous contours. Image Vis. Comput. 6: 407–421.CrossRef Heitger F, v.d. Heydt R, Peterhans E, Rosenthaler L, Kübler O (1998) Simulation of neural contour mechanisms: Representing anomalous contours. Image Vis. Comput. 6: 407–421.CrossRef
Zurück zum Zitat Hirsch JA, Gilbert CD (1991) Synaptic physiology of horizontal connections in the cat's visual cortex. J. Neurosci. 11: 1800–1809.PubMed Hirsch JA, Gilbert CD (1991) Synaptic physiology of horizontal connections in the cat's visual cortex. J. Neurosci. 11: 1800–1809.PubMed
Zurück zum Zitat Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 148: 574–591.PubMed Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 148: 574–591.PubMed
Zurück zum Zitat Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160: 106–154.PubMed Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160: 106–154.PubMed
Zurück zum Zitat Hupe JM, James AC, Payne BR, Lomber SG, Girard P, Bullier J (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394: 784–787.PubMedCrossRef Hupe JM, James AC, Payne BR, Lomber SG, Girard P, Bullier J (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394: 784–787.PubMedCrossRef
Zurück zum Zitat Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid analysis. IEEE PAMI 20: 1254–1259. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid analysis. IEEE PAMI 20: 1254–1259.
Zurück zum Zitat Kapadia MK, Ito M, Gilbert CD, Westheimer G (1995) Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15: 843–856.PubMedCrossRef Kapadia MK, Ito M, Gilbert CD, Westheimer G (1995) Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15: 843–856.PubMedCrossRef
Zurück zum Zitat Kapadia MK, Westheimer G, Gilbert CD (2000) Spatial distribution of contextual interactions in primary visual cortex and in visual perception. J. Neurophysiol. 84: 2048–2062.PubMed Kapadia MK, Westheimer G, Gilbert CD (2000) Spatial distribution of contextual interactions in primary visual cortex and in visual perception. J. Neurophysiol. 84: 2048–2062.PubMed
Zurück zum Zitat Kastner S, de Weerd P, Pinsk MA, Elizondo MI, Desimone R, Ungerleider LG (2001) Modulation of sensory suppression: Implications for receptive field sizes in the human visual cortex. J. Neurophysiol. 86: 1398–1411.PubMed Kastner S, de Weerd P, Pinsk MA, Elizondo MI, Desimone R, Ungerleider LG (2001) Modulation of sensory suppression: Implications for receptive field sizes in the human visual cortex. J. Neurophysiol. 86: 1398–1411.PubMed
Zurück zum Zitat Kastner S, de Weerd P, Ungerleider LG (2000) Texture segregation in the human visual cortex: A functional MRI study. J. Neurophysiol. 83: 2453–2457.PubMed Kastner S, de Weerd P, Ungerleider LG (2000) Texture segregation in the human visual cortex: A functional MRI study. J. Neurophysiol. 83: 2453–2457.PubMed
Zurück zum Zitat Kehrer L, Meinecke C (2003) A space-variant filter model of texture segregation: parameter adjustment guided by psychophysical data. Biol. Cybern. 88: 183–200.PubMedCrossRef Kehrer L, Meinecke C (2003) A space-variant filter model of texture segregation: parameter adjustment guided by psychophysical data. Biol. Cybern. 88: 183–200.PubMedCrossRef
Zurück zum Zitat Koch C, Poggio T (1999) Predicting the visual world: Silence is golden. Nat. Neurosc. 2: 9–10.CrossRef Koch C, Poggio T (1999) Predicting the visual world: Silence is golden. Nat. Neurosc. 2: 9–10.CrossRef
Zurück zum Zitat Krauskopf J (1963) Effect of retinal image stabilization on the appearance of heterochromatic targets. J. Opt. Soc. Am. 53: 741–744.PubMedCrossRef Krauskopf J (1963) Effect of retinal image stabilization on the appearance of heterochromatic targets. J. Opt. Soc. Am. 53: 741–744.PubMedCrossRef
Zurück zum Zitat Lamme V, Rodriguez-Rodriguez V, Spekreijse H (1999) Seperate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the Macaque monkey. Cerebral Cortex 9: 406–413.PubMedCrossRef Lamme V, Rodriguez-Rodriguez V, Spekreijse H (1999) Seperate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the Macaque monkey. Cerebral Cortex 9: 406–413.PubMedCrossRef
Zurück zum Zitat Lamme V, Super H, Spekreijse H (1998) Feedforward, horizontal, and feedback processing in the visual cortex. Curr. Opin. Neurobiol. 8: 529–535.PubMedCrossRef Lamme V, Super H, Spekreijse H (1998) Feedforward, horizontal, and feedback processing in the visual cortex. Curr. Opin. Neurobiol. 8: 529–535.PubMedCrossRef
Zurück zum Zitat Lamme VAF, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosci. 2000: 571–579.CrossRef Lamme VAF, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosci. 2000: 571–579.CrossRef
Zurück zum Zitat Landy MS, Bergen JR (1991) Texture segregation and orientation gradient. Vis. Res. 31: 679–691.PubMedCrossRef Landy MS, Bergen JR (1991) Texture segregation and orientation gradient. Vis. Res. 31: 679–691.PubMedCrossRef
Zurück zum Zitat Li Z (2002) A saliency map in primary visual cortex. Trends in Cogn. Sci. 6: 9–16.CrossRef Li Z (2002) A saliency map in primary visual cortex. Trends in Cogn. Sci. 6: 9–16.CrossRef
Zurück zum Zitat Malik J, Perona P (1990) Preattentive texture discrimination with early vision mechanisms. J. Opt. Soc. Am. A 7: 923–932.PubMedCrossRef Malik J, Perona P (1990) Preattentive texture discrimination with early vision mechanisms. J. Opt. Soc. Am. A 7: 923–932.PubMedCrossRef
Zurück zum Zitat Mansson J (2000) Occluding contours: A computational model of suppressive mechanisms in human contour perception, vol. 81. Lund University Cognitive Studies, Lund. Mansson J (2000) Occluding contours: A computational model of suppressive mechanisms in human contour perception, vol. 81. Lund University Cognitive Studies, Lund.
Zurück zum Zitat Martinez-Conde S, Macknik SL, Hubel DH (2004) The role of fixational eye movements in visual perception. Nat. Rev. Neurosci. 5: 229–240.PubMedCrossRef Martinez-Conde S, Macknik SL, Hubel DH (2004) The role of fixational eye movements in visual perception. Nat. Rev. Neurosci. 5: 229–240.PubMedCrossRef
Zurück zum Zitat Mazer JA, Gallant JL (2003) Goal-related activity in V4 during free viewing visual search: Evidence for a ventral stream visual salience map. Neuron 40: 1241–1250.PubMedCrossRef Mazer JA, Gallant JL (2003) Goal-related activity in V4 during free viewing visual search: Evidence for a ventral stream visual salience map. Neuron 40: 1241–1250.PubMedCrossRef
Zurück zum Zitat Meinecke C, Donk M (2002) Detection performance in pop-out tasks: Nonmonotonic changes with display size and eccentricitiy. Perception 31: 591–602.PubMedCrossRef Meinecke C, Donk M (2002) Detection performance in pop-out tasks: Nonmonotonic changes with display size and eccentricitiy. Perception 31: 591–602.PubMedCrossRef
Zurück zum Zitat Merigan WH (1996) Basic visual capacities in shape discrimination after lesions of extrastriate area V4 in macaques. Vis. Neurosci. 13: 51–60.PubMedCrossRef Merigan WH (1996) Basic visual capacities in shape discrimination after lesions of extrastriate area V4 in macaques. Vis. Neurosci. 13: 51–60.PubMedCrossRef
Zurück zum Zitat Merigan WH (2000) Cortical area V4 is critical for certain texture discriminations, but this effect is not dependent on attention. Vis. Neurosci. 17: 949–958.PubMedCrossRef Merigan WH (2000) Cortical area V4 is critical for certain texture discriminations, but this effect is not dependent on attention. Vis. Neurosci. 17: 949–958.PubMedCrossRef
Zurück zum Zitat Mignard M, Malpeli JG (1991) Paths of information flow through visual cortex. Science 251: 1249–1251.PubMedCrossRef Mignard M, Malpeli JG (1991) Paths of information flow through visual cortex. Science 251: 1249–1251.PubMedCrossRef
Zurück zum Zitat Mumford DB (1994) Neuronal Architectures for Pattern-theoretic Problems. In: C Koch, J Davis, eds. Large-Scale Neuronal Theories of the Brain. MIT Press, pp. 125–152. Mumford DB (1994) Neuronal Architectures for Pattern-theoretic Problems. In: C Koch, J Davis, eds. Large-Scale Neuronal Theories of the Brain. MIT Press, pp. 125–152.
Zurück zum Zitat Murray SO, Kersten D, Olshausen BA, Schrater P, Woods DL (2002) Shape perception reduces activity in human primary visual cortex. PNAS 99: 15164–15169.PubMedCrossRef Murray SO, Kersten D, Olshausen BA, Schrater P, Woods DL (2002) Shape perception reduces activity in human primary visual cortex. PNAS 99: 15164–15169.PubMedCrossRef
Zurück zum Zitat Neumann H, Mingolla E (2001) Computational neural models of spatial integration in perceptual grouping. In: TF Shipley, PJ Kellman, eds. From Fragments to Objects—Segmentation and Grouping in Vision. Elsevier, Amsterdam, pp 353–400. Neumann H, Mingolla E (2001) Computational neural models of spatial integration in perceptual grouping. In: TF Shipley, PJ Kellman, eds. From Fragments to Objects—Segmentation and Grouping in Vision. Elsevier, Amsterdam, pp 353–400.
Zurück zum Zitat Neumann H, Pessoa L, Hansen T (1999) Interaction of ON and OFF pathways for visual contrast measurement. Biol. Cybern. 81: 515–532.PubMedCrossRef Neumann H, Pessoa L, Hansen T (1999) Interaction of ON and OFF pathways for visual contrast measurement. Biol. Cybern. 81: 515–532.PubMedCrossRef
Zurück zum Zitat Neumann H, Sepp W (1999) Recurrent V1–V2 interaction in early visual boundary processing. Biol. Cybern. 81: 425–444.PubMedCrossRef Neumann H, Sepp W (1999) Recurrent V1–V2 interaction in early visual boundary processing. Biol. Cybern. 81: 425–444.PubMedCrossRef
Zurück zum Zitat Nothdurft HC (1985) Sensitivity for structure gradient in texture discrimination tasks. Vis. Res. 25: 1957–1968.PubMedCrossRef Nothdurft HC (1985) Sensitivity for structure gradient in texture discrimination tasks. Vis. Res. 25: 1957–1968.PubMedCrossRef
Zurück zum Zitat Nothdurft HC (1991) Texture segmentation and pop-out from orientation contrast. Vis. Res. 31: 1073–1078.PubMedCrossRef Nothdurft HC (1991) Texture segmentation and pop-out from orientation contrast. Vis. Res. 31: 1073–1078.PubMedCrossRef
Zurück zum Zitat Nothdurft HC (1992) Feature analysis and the role of similarity in preattentive vision. Percept. Psychophys. 52: 355–375.PubMed Nothdurft HC (1992) Feature analysis and the role of similarity in preattentive vision. Percept. Psychophys. 52: 355–375.PubMed
Zurück zum Zitat Nothdurft HC (2000c) Salience from feature contrast: Variations with texture density. Vis. Res. 40: 3181–3200.PubMedCrossRef Nothdurft HC (2000c) Salience from feature contrast: Variations with texture density. Vis. Res. 40: 3181–3200.PubMedCrossRef
Zurück zum Zitat Nothdurft HC, Gallant JL, van Essen DC (1999) Response modulation by texture surround in primate area V1: correlates of “popout” under anesthesia. Vis. Neurosci. 16: 15–34.PubMedCrossRef Nothdurft HC, Gallant JL, van Essen DC (1999) Response modulation by texture surround in primate area V1: correlates of “popout” under anesthesia. Vis. Neurosci. 16: 15–34.PubMedCrossRef
Zurück zum Zitat Nothdurft HC, Gallant JL, van Essen DC (2000) Response profiles to texture border patterns in V1. Vis. Neurosci. 17: 421–436.PubMedCrossRef Nothdurft HC, Gallant JL, van Essen DC (2000) Response profiles to texture border patterns in V1. Vis. Neurosci. 17: 421–436.PubMedCrossRef
Zurück zum Zitat Parent P, Zucker S (1989) Trace inference, curvature consistency, curve detection. IEEE PAMI 11: 823–839. Parent P, Zucker S (1989) Trace inference, curvature consistency, curve detection. IEEE PAMI 11: 823–839.
Zurück zum Zitat Pasupathy A, Connor CE (2001) Shape representation in area V4: Position-specific tuning for boundary conformation. J. Neurosci. 86: 2505–2519. Pasupathy A, Connor CE (2001) Shape representation in area V4: Position-specific tuning for boundary conformation. J. Neurosci. 86: 2505–2519.
Zurück zum Zitat Peterhans E (1997) Functional organization of area V2 in the awake monkey. In: KS Rockland, JH Kaas, A Peters, eds. Extrastriate Cortex in Primates, vol 12. Plenum Press, New York. Peterhans E (1997) Functional organization of area V2 in the awake monkey. In: KS Rockland, JH Kaas, A Peters, eds. Extrastriate Cortex in Primates, vol 12. Plenum Press, New York.
Zurück zum Zitat Pollen DA, Przybyszewski AW, Rubin MA, Foote W (2002) Spatial receptive field organization of macaque V4 neurons. Cerebral Cortex 12: 601–616.PubMedCrossRef Pollen DA, Przybyszewski AW, Rubin MA, Foote W (2002) Spatial receptive field organization of macaque V4 neurons. Cerebral Cortex 12: 601–616.PubMedCrossRef
Zurück zum Zitat Przybyszewski AW, Gaska JP, Foote W, Pollen DA (2000) Striate Cortex increases contrast gain of macaque LGN neurons. Vis. Neurosci. 17: 485–494.PubMedCrossRef Przybyszewski AW, Gaska JP, Foote W, Pollen DA (2000) Striate Cortex increases contrast gain of macaque LGN neurons. Vis. Neurosci. 17: 485–494.PubMedCrossRef
Zurück zum Zitat Rao RPN, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Rao RPN, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects.
Zurück zum Zitat Reynolds JH, Pasternak T, Desimone R (2000) Attention increases sensitivity of V4 neurons. Neuron 26: 703–714.PubMedCrossRef Reynolds JH, Pasternak T, Desimone R (2000) Attention increases sensitivity of V4 neurons. Neuron 26: 703–714.PubMedCrossRef
Zurück zum Zitat Ross WD, Grossberg S, Mingolla E (2000) Visual cortical mechanisms of perceptual grouping: Interacting layers, networks, columns, and maps. Neural Netw. 13: 571–588.PubMedCrossRef Ross WD, Grossberg S, Mingolla E (2000) Visual cortical mechanisms of perceptual grouping: Interacting layers, networks, columns, and maps. Neural Netw. 13: 571–588.PubMedCrossRef
Zurück zum Zitat Safran AB, Landis T (1998) The vanishing of the Sun. A manifestation of plasticity in the visual cortex. Surv. Ophthalmol. 42: 449–452.PubMedCrossRef Safran AB, Landis T (1998) The vanishing of the Sun. A manifestation of plasticity in the visual cortex. Surv. Ophthalmol. 42: 449–452.PubMedCrossRef
Zurück zum Zitat Salin PA, Bullier J (1995) Corticocortical connections in the visual system: structure and function. Physiol. Rev. 75: 107–154.PubMed Salin PA, Bullier J (1995) Corticocortical connections in the visual system: structure and function. Physiol. Rev. 75: 107–154.PubMed
Zurück zum Zitat Sandell JH, Schiller PH (1982) Effect of cooling area 18 on striate cortex cells in the squirrel monkey. J. Neurophysiol. 48: 38–48.PubMed Sandell JH, Schiller PH (1982) Effect of cooling area 18 on striate cortex cells in the squirrel monkey. J. Neurophysiol. 48: 38–48.PubMed
Zurück zum Zitat Schubö A (2002) Is preattentive processing in visual search similar to preattentive processing in texture segmentation? In: HH Bülthoff, KR Gegenfurtner, HA Mallot, R Ulrich eds. TWK. Knirsch Verlag, Tübingen, p. 191. Schubö A (2002) Is preattentive processing in visual search similar to preattentive processing in texture segmentation? In: HH Bülthoff, KR Gegenfurtner, HA Mallot, R Ulrich eds. TWK. Knirsch Verlag, Tübingen, p. 191.
Zurück zum Zitat Schubö A, Meinecke C, Schröger E (2001) Automaticity and attention: investigating automatic processing in texture segmentation with event-related brain potentials. Cogn. Brain Res. 11: 341–361. Schubö A, Meinecke C, Schröger E (2001) Automaticity and attention: investigating automatic processing in texture segmentation with event-related brain potentials. Cogn. Brain Res. 11: 341–361.
Zurück zum Zitat Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RBH (1995) Borders of multiple visual areas in humans revealed by functional MRI. Science 268: 889–893.PubMedCrossRef Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RBH (1995) Borders of multiple visual areas in humans revealed by functional MRI. Science 268: 889–893.PubMedCrossRef
Zurück zum Zitat Smith AT, Singh KD, Williams AL, Greenlee MW (2001) Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. Cerebral Cortex 11: 1182–1190.PubMedCrossRef Smith AT, Singh KD, Williams AL, Greenlee MW (2001) Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. Cerebral Cortex 11: 1182–1190.PubMedCrossRef
Zurück zum Zitat Thielscher A, Neumann H (2003) Neural mechanisms of cortico-cortical interaction in texture boundary detection: A modeling approach. Neuroscience 122: 921–939.PubMedCrossRef Thielscher A, Neumann H (2003) Neural mechanisms of cortico-cortical interaction in texture boundary detection: A modeling approach. Neuroscience 122: 921–939.PubMedCrossRef
Zurück zum Zitat Thielscher A, Schubö A, Neumann H (2002) A neural model of human texture processing: Texture segmentation vs. Visual search. In: HH Bülthoff, C Walraven eds. Biologically Motivated Computer Vision. Springer, Heidelberg. Thielscher A, Schubö A, Neumann H (2002) A neural model of human texture processing: Texture segmentation vs. Visual search. In: HH Bülthoff, C Walraven eds. Biologically Motivated Computer Vision. Springer, Heidelberg.
Zurück zum Zitat Ungerleider LG, Haxby JV (1994) ‘What' and `where' in the human brain. Curr. Opin. Neurobiol. 4: 157–165.PubMedCrossRef Ungerleider LG, Haxby JV (1994) ‘What' and `where' in the human brain. Curr. Opin. Neurobiol. 4: 157–165.PubMedCrossRef
Zurück zum Zitat v.d. Heydt R, Heitger F, Peterhans E (1993) Perception of occluding contours: Neural mechanisms and a computational model. Biomed. Res. 14: 1–6. v.d. Heydt R, Heitger F, Peterhans E (1993) Perception of occluding contours: Neural mechanisms and a computational model. Biomed. Res. 14: 1–6.
Zurück zum Zitat v.d. Heydt R, Peterhans E, Baumgartner G (1984) Illusory contours and cortical neuron responses. Science 224: 1260–1262.CrossRef v.d. Heydt R, Peterhans E, Baumgartner G (1984) Illusory contours and cortical neuron responses. Science 224: 1260–1262.CrossRef
Zurück zum Zitat Wolfson SS, Landy MS (1995) Discrimination of orientation-defined texture edges. Vis. Res. 35: 2863–2877.PubMedCrossRef Wolfson SS, Landy MS (1995) Discrimination of orientation-defined texture edges. Vis. Res. 35: 2863–2877.PubMedCrossRef
Zurück zum Zitat Yarbus AL (1967) Eye movements and vision. Plenum Press, New York. Yarbus AL (1967) Eye movements and vision. Plenum Press, New York.
Zurück zum Zitat Zilles K, Clarke S (1997) Architecture, connectivity, and transmitter receptors of human extrastriate visual cortex—Comparison with nonhuman primates. In: KS Rockland, JH Kaas, A Peters eds. Extrastriate Cortex in Primates, vol 12. Plenum Press, New York. Zilles K, Clarke S (1997) Architecture, connectivity, and transmitter receptors of human extrastriate visual cortex—Comparison with nonhuman primates. In: KS Rockland, JH Kaas, A Peters eds. Extrastriate Cortex in Primates, vol 12. Plenum Press, New York.
Zurück zum Zitat Zipser K, Lamme VAF, Schiller PH (1996) Contextual modulation in primary visual cortex. J. Neurosci. 16: 7376–7389.PubMed Zipser K, Lamme VAF, Schiller PH (1996) Contextual modulation in primary visual cortex. J. Neurosci. 16: 7376–7389.PubMed
Metadaten
Titel
A computational model to link psychophysics and cortical cell activation patterns in human texture processing
verfasst von
A. Thielscher
H. Neumann
Publikationsdatum
01.06.2007
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2007
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-006-0011-9

Weitere Artikel der Ausgabe 3/2007

Journal of Computational Neuroscience 3/2007 Zur Ausgabe

BRIEF COMMUNICATION

From grids to places

Premium Partner