Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2007

01.06.2007

Local cortical circuit model inferred from power-law distributed neuronal avalanches

verfasst von: Jun-nosuke Teramae, Tomoki Fukai

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2007

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

How cortical neurons process information crucially depends on how their local circuits are organized. Spontaneous synchronous neuronal activity propagating through neocortical slices displays highly diverse, yet repeatable, activity patterns called “neuronal avalanches”. They obey power-law distributions of the event sizes and lifetimes, presumably reflecting the structure of local circuits developed in slice cultures. However, the explicit network structure underlying the power-law statistics remains unclear. Here, we present a neuronal network model of pyramidal and inhibitory neurons that enables stable propagation of avalanche-like spiking activity. We demonstrate a neuronal wiring rule that governs the formation of mutually overlapping cell assemblies during the development of this network. The resultant network comprises a mixture of feedforward chains and recurrent circuits, in which neuronal avalanches are stable if the former structure is predominant. Interestingly, the recurrent synaptic connections formed by this wiring rule limit the number of cell assemblies embeddable in a neuron pool of given size. We investigate how the resultant power laws depend on the details of the cell-assembly formation as well as on the inhibitory feedback. Our model suggests that local cortical circuits may have a more complex topological design than has previously been thought.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abbott LF, Rohrkemper R (2006) A simple growth model constructs critical avalanche networks. Prog. Brain Res. in press. Abbott LF, Rohrkemper R (2006) A simple growth model constructs critical avalanche networks. Prog. Brain Res. in press.
Zurück zum Zitat Abeles M (1991) Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University Press, Cambridge. Abeles M (1991) Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University Press, Cambridge.
Zurück zum Zitat Alsina B, Vu T, Cohen-Cory S (2001) Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat. Neurosci. 4: 1093–1101.PubMedCrossRef Alsina B, Vu T, Cohen-Cory S (2001) Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat. Neurosci. 4: 1093–1101.PubMedCrossRef
Zurück zum Zitat Amari S (1988) Associative memory and its statistical neurodynamical analysis. In: Neural and synergetic computers. Haken H (ed.) Springer-Verlag, Berlin, pp. 85–99. Amari S (1988) Associative memory and its statistical neurodynamical analysis. In: Neural and synergetic computers. Haken H (ed.) Springer-Verlag, Berlin, pp. 85–99.
Zurück zum Zitat Amit DJ, Gutfreund H, Sompolinsky H (1985) Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys. Rev. Lett. 55: 1530–1533.PubMedCrossRef Amit DJ, Gutfreund H, Sompolinsky H (1985) Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys. Rev. Lett. 55: 1530–1533.PubMedCrossRef
Zurück zum Zitat Aviel Y, Horn D, Abeles M (2005) Memory capacity of balanced networks. Neural Comp. 17: 691–713.CrossRef Aviel Y, Horn D, Abeles M (2005) Memory capacity of balanced networks. Neural Comp. 17: 691–713.CrossRef
Zurück zum Zitat Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286: 509–512.PubMedCrossRef Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286: 509–512.PubMedCrossRef
Zurück zum Zitat Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J. Neurosci. 23: 11167–11177.PubMed Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J. Neurosci. 23: 11167–11177.PubMed
Zurück zum Zitat Beggs JM, Plenz D (2004) Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci. 24: 5216–5229.PubMedCrossRef Beggs JM, Plenz D (2004) Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci. 24: 5216–5229.PubMedCrossRef
Zurück zum Zitat Bi G, Poo M (2001) Synaptic modification by correlated activity: Hebb's postulate revisited. Annu. Rev. Neurosci. 24: 139–166.PubMedCrossRef Bi G, Poo M (2001) Synaptic modification by correlated activity: Hebb's postulate revisited. Annu. Rev. Neurosci. 24: 139–166.PubMedCrossRef
Zurück zum Zitat Braitenberg V, Schuz A (1998) Cortex: Statics and Geometry of Neuronal Connectivity. Springer-Verlag, Berlin. Braitenberg V, Schuz A (1998) Cortex: Statics and Geometry of Neuronal Connectivity. Springer-Verlag, Berlin.
Zurück zum Zitat Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8: 183–208.PubMedCrossRef Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8: 183–208.PubMedCrossRef
Zurück zum Zitat Cateau H, Fukai T (2001) Fokker-Planck approach to the pulse packet propagation in synfire chain. Neural Netw. 14: 675–685.PubMedCrossRef Cateau H, Fukai T (2001) Fokker-Planck approach to the pulse packet propagation in synfire chain. Neural Netw. 14: 675–685.PubMedCrossRef
Zurück zum Zitat Corral A, Perez CJ, Diaz-Guilera A, Arenas A (1995) Self-organized criticality and synchronization in a lattice model of integrate-and-fire oscillators. Phys. Rev. Lett. 74: 118–121.PubMedCrossRef Corral A, Perez CJ, Diaz-Guilera A, Arenas A (1995) Self-organized criticality and synchronization in a lattice model of integrate-and-fire oscillators. Phys. Rev. Lett. 74: 118–121.PubMedCrossRef
Zurück zum Zitat Diesmann M, Gewaltig M, Aertsen A (1999) Stable propagation of synchronous spiking in cortical neural networks. Nature 402: 529–533.PubMedCrossRef Diesmann M, Gewaltig M, Aertsen A (1999) Stable propagation of synchronous spiking in cortical neural networks. Nature 402: 529–533.PubMedCrossRef
Zurück zum Zitat Eurich CW, Herrmann JM, Ernst UA (2002) Finite-size effects of avalanche dynamics. Phys. Rev. E 66: 066137-1-15CrossRef Eurich CW, Herrmann JM, Ernst UA (2002) Finite-size effects of avalanche dynamics. Phys. Rev. E 66: 066137-1-15CrossRef
Zurück zum Zitat Foldy C, Dyhrfjeld-Johnsen J, Soltesz I (2005) Structure of cortical microcircuit theory. J. Physiol. 562: 47–54.PubMedCrossRef Foldy C, Dyhrfjeld-Johnsen J, Soltesz I (2005) Structure of cortical microcircuit theory. J. Physiol. 562: 47–54.PubMedCrossRef
Zurück zum Zitat Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287: 273–278.PubMedCrossRef Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287: 273–278.PubMedCrossRef
Zurück zum Zitat Hahnloser RH, Kozhevnikov AA, Fee MS (2002) An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419: 65–70. Erratum in: Nature (2003) 421: 294.PubMedCrossRef Hahnloser RH, Kozhevnikov AA, Fee MS (2002) An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419: 65–70. Erratum in: Nature (2003) 421: 294.PubMedCrossRef
Zurück zum Zitat Harris TE (1989) The Theory of Branching Processes. Dover, New York. Harris TE (1989) The Theory of Branching Processes. Dover, New York.
Zurück zum Zitat Hensch TK, Stryker MP (2004) Columnar architecture sculpted by GABA circuits in developing cat visual cortex. Science 303: 1678–1681.PubMedCrossRef Hensch TK, Stryker MP (2004) Columnar architecture sculpted by GABA circuits in developing cat visual cortex. Science 303: 1678–1681.PubMedCrossRef
Zurück zum Zitat Holmgren C, Harkany T, Svennenfors B, Zilberter Y (2003) Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J. Physiol. 551: 139–153.PubMedCrossRef Holmgren C, Harkany T, Svennenfors B, Zilberter Y (2003) Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J. Physiol. 551: 139–153.PubMedCrossRef
Zurück zum Zitat Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79: 2554–2558.PubMedCrossRef Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79: 2554–2558.PubMedCrossRef
Zurück zum Zitat Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R (2004) Synfire chains and cortical songs: temporal modules of cortical activity. Science 304: 559–564.PubMedCrossRef Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R (2004) Synfire chains and cortical songs: temporal modules of cortical activity. Science 304: 559–564.PubMedCrossRef
Zurück zum Zitat Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans. Neural. Netw. 15: 1063–1070.CrossRef Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans. Neural. Netw. 15: 1063–1070.CrossRef
Zurück zum Zitat Izhikevich EM, Gally JA, Edelman GM (2004) Spike-timing dynamics of neuronal groups. Cereb. Cortex 14: 933–944.PubMedCrossRef Izhikevich EM, Gally JA, Edelman GM (2004) Spike-timing dynamics of neuronal groups. Cereb. Cortex 14: 933–944.PubMedCrossRef
Zurück zum Zitat Kalisman N, Silberberg G, Markram H (2005) The neocortical microcircuit as a tabula rasa. Proc. Natl. Acad. Sci. U.S.A. 102: 880–885.PubMedCrossRef Kalisman N, Silberberg G, Markram H (2005) The neocortical microcircuit as a tabula rasa. Proc. Natl. Acad. Sci. U.S.A. 102: 880–885.PubMedCrossRef
Zurück zum Zitat Khazipov R, Sirota A, Leinekugel X, Holmes GL, Ben-Ari Y, Buzsaki G (2004) Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432: 758–761.PubMedCrossRef Khazipov R, Sirota A, Leinekugel X, Holmes GL, Ben-Ari Y, Buzsaki G (2004) Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432: 758–761.PubMedCrossRef
Zurück zum Zitat Kimpo RR, Theunissen FE, Doupe AJ (2003) Propagation of correlated activity through multiple stages of a neural circuit. J. Neurosci. 23: 5750–5761.PubMed Kimpo RR, Theunissen FE, Doupe AJ (2003) Propagation of correlated activity through multiple stages of a neural circuit. J. Neurosci. 23: 5750–5761.PubMed
Zurück zum Zitat Kitano K, Cateau H, Fukai T (2002) Self-organization of memory activity through spike-timing-dependent plasticity. Neurorep 13: 795–798.CrossRef Kitano K, Cateau H, Fukai T (2002) Self-organization of memory activity through spike-timing-dependent plasticity. Neurorep 13: 795–798.CrossRef
Zurück zum Zitat Kitano K, Fukai T (2004) Temporal characteristics of the predictive synchronous firing modeled by spike-timing-dependent plasticity. Learn. Mem. 11: 267–276.PubMedCrossRef Kitano K, Fukai T (2004) Temporal characteristics of the predictive synchronous firing modeled by spike-timing-dependent plasticity. Learn. Mem. 11: 267–276.PubMedCrossRef
Zurück zum Zitat Levina A, Herrmann JM, Geisel T (2006) Dynamical Synapses give rise to a power-law distribution of neuronal avalanches. Adv. in Neural Information Processing Systems. Levina A, Herrmann JM, Geisel T (2006) Dynamical Synapses give rise to a power-law distribution of neuronal avalanches. Adv. in Neural Information Processing Systems.
Zurück zum Zitat Levy N, Horn D, Meilijson I, Ruppin E (2001) Distributed synchrony in a cell assembly of spiking neurons. Neural Netw. 14: 815–824.PubMedCrossRef Levy N, Horn D, Meilijson I, Ruppin E (2001) Distributed synchrony in a cell assembly of spiking neurons. Neural Netw. 14: 815–824.PubMedCrossRef
Zurück zum Zitat Mataga N, Mizuguchi Y, Hensch TK (2004) Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron 44: 1031–1041.PubMedCrossRef Mataga N, Mizuguchi Y, Hensch TK (2004) Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron 44: 1031–1041.PubMedCrossRef
Zurück zum Zitat Mehring C, Hehl U, Kubo M, Diesmann M, Aertsen A (2003) Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biol. Cybern. 88: 395–408.PubMedCrossRef Mehring C, Hehl U, Kubo M, Diesmann M, Aertsen A (2003) Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biol. Cybern. 88: 395–408.PubMedCrossRef
Zurück zum Zitat Moradi F (2004) Information coding and oscillatory activity in synfire neural networks with and without inhibitory coupling. Biol. Cybern. 91: 283–294.PubMedCrossRef Moradi F (2004) Information coding and oscillatory activity in synfire neural networks with and without inhibitory coupling. Biol. Cybern. 91: 283–294.PubMedCrossRef
Zurück zum Zitat Peinado A (2000) Traveling slow waves of neural activity: a novel form of network activity in developing neocortex. J. Neurosci. 20: RC54:1–6. Peinado A (2000) Traveling slow waves of neural activity: a novel form of network activity in developing neocortex. J. Neurosci. 20: RC54:1–6.
Zurück zum Zitat Prut Y, Vaadia E, Bergman H, Haalman I, Slovin H, Abeles M (1998) Spatiotemporal structure of cortical activity: properties and behavioral relevance. J. Neurophysiol. 79: 2857–2874.PubMed Prut Y, Vaadia E, Bergman H, Haalman I, Slovin H, Abeles M (1998) Spatiotemporal structure of cortical activity: properties and behavioral relevance. J. Neurophysiol. 79: 2857–2874.PubMed
Zurück zum Zitat Reyes AD (2003) Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nat. Neurosci. 6: 593–599.PubMedCrossRef Reyes AD (2003) Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nat. Neurosci. 6: 593–599.PubMedCrossRef
Zurück zum Zitat Rolls ET, Treves A (1998) Neural Networks and Brain Function. Oxford University Press, New York. Rolls ET, Treves A (1998) Neural Networks and Brain Function. Oxford University Press, New York.
Zurück zum Zitat Shiino M, Fukai T (1993) Self-consistent signal-to-noise analysis of the statistical behavior of analog neural networks and enhancement of the storage capacity. Phys. Rev. E 48: 867–897.CrossRef Shiino M, Fukai T (1993) Self-consistent signal-to-noise analysis of the statistical behavior of analog neural networks and enhancement of the storage capacity. Phys. Rev. E 48: 867–897.CrossRef
Zurück zum Zitat Sompolinsky H, Kanter I (1986) Temporal association in asymmetric neural networks. Phys. Rev. Lett. 57: 2861–2864.PubMedCrossRef Sompolinsky H, Kanter I (1986) Temporal association in asymmetric neural networks. Phys. Rev. Lett. 57: 2861–2864.PubMedCrossRef
Zurück zum Zitat Stepanyants A, Tams G, Chklovskii DB (2004) Class-specific features of neuronal wiring. Neuron 43: 251–259.PubMedCrossRef Stepanyants A, Tams G, Chklovskii DB (2004) Class-specific features of neuronal wiring. Neuron 43: 251–259.PubMedCrossRef
Zurück zum Zitat Stewart CV, Gerfen CR, Plenz D (2004) Dopamine facilitates “neuronal avalanches” and “synfire chains” in layer 2/3 of rat somatosensory cortex slices. Abs. Soc. Neurosci. Stewart CV, Gerfen CR, Plenz D (2004) Dopamine facilitates “neuronal avalanches” and “synfire chains” in layer 2/3 of rat somatosensory cortex slices. Abs. Soc. Neurosci.
Zurück zum Zitat Teramae J, Fukai T (2005) Neuronal avalanches as a probe for cortical circuit structure. Abs. Soc. Neurosci. Teramae J, Fukai T (2005) Neuronal avalanches as a probe for cortical circuit structure. Abs. Soc. Neurosci.
Zurück zum Zitat Uesaka N, Hirai S, Maruyama T, Ruthazer ES, Yamamoto N (2005) Activity dependence of cortical axon branch formation: a morphological and electrophysiological study using organotypic slice cultures. J. Neurosci. 25: 1–9.PubMedCrossRef Uesaka N, Hirai S, Maruyama T, Ruthazer ES, Yamamoto N (2005) Activity dependence of cortical axon branch formation: a morphological and electrophysiological study using organotypic slice cultures. J. Neurosci. 25: 1–9.PubMedCrossRef
Zurück zum Zitat Vogels TP, Rajan K, Abbott LF.. (2005) Neural network dynamics. Annu. Rev. Neurosci. 28: 357–376.PubMedCrossRef Vogels TP, Rajan K, Abbott LF.. (2005) Neural network dynamics. Annu. Rev. Neurosci. 28: 357–376.PubMedCrossRef
Zurück zum Zitat Yoshimura Y, Dantzker JLM, Callaway EM (2005) Excitatory cortical neurons form fine-scale functional networks. Nature 433: 868–873.PubMedCrossRef Yoshimura Y, Dantzker JLM, Callaway EM (2005) Excitatory cortical neurons form fine-scale functional networks. Nature 433: 868–873.PubMedCrossRef
Zurück zum Zitat Zapperi S, Baekgaard LK, Stanley HE (1995) Self-organized branching processes: mean-field theory for avalanches. Phys. Rev. Lett. 75: 4071–4074.PubMedCrossRef Zapperi S, Baekgaard LK, Stanley HE (1995) Self-organized branching processes: mean-field theory for avalanches. Phys. Rev. Lett. 75: 4071–4074.PubMedCrossRef
Metadaten
Titel
Local cortical circuit model inferred from power-law distributed neuronal avalanches
verfasst von
Jun-nosuke Teramae
Tomoki Fukai
Publikationsdatum
01.06.2007
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2007
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-006-0014-6

Weitere Artikel der Ausgabe 3/2007

Journal of Computational Neuroscience 3/2007 Zur Ausgabe

BRIEF COMMUNICATION

From grids to places

Premium Partner