Skip to main content
Erschienen in: Computational Mechanics 5/2020

10.02.2020 | Original Paper

A consistent strain-based beam element with quaternion representation of rotations

verfasst von: Damjan Lolić, Dejan Zupan, Miha Brojan

Erschienen in: Computational Mechanics | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a novel consistent singularity-free strain-based finite element formulation for the analysis of three-dimensional frame-like structures. Our model is based on a geometrically exact finite-strain beam theory, quaternion parametrization of spatial rotations, assumption that the strain measures are constant along the length of the element and a proper choice of basis for the translational strain vector representation. As it is common for strain-based elements, the present formulation does not suffer from shear locking. A comparison of our results with the results from the literature and a commercial finite element analysis software demonstrates the advantages of the proposed formulation, especially when the structure is subjected to larger shear deformations. This stems from the fact that our model ensures a mathematically consistent updating procedure for all the quantities describing the beam. This aspect is often overlooked, since most of the numerical cases from other studies on this topic engage rather small-shear strains for which the consistent update is not crucial as the number of elements is increased.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hover FS (1997) Simulation of stiff massless tethers. Ocean Eng 24(8):765–783 Hover FS (1997) Simulation of stiff massless tethers. Ocean Eng 24(8):765–783
2.
Zurück zum Zitat Nazmy AS, Abdel-Ghaffar AM (1990) Three-dimensional nonlinear static analysis of cable-stayed bridges. Comput Struct 34(2):257–271 Nazmy AS, Abdel-Ghaffar AM (1990) Three-dimensional nonlinear static analysis of cable-stayed bridges. Comput Struct 34(2):257–271
3.
Zurück zum Zitat Coleman BD, Swigon D (2000) Theory of supercoiled elastic rings with self-contact and its application to DNA plasmids. J Elast 60(3):173–221MathSciNetMATH Coleman BD, Swigon D (2000) Theory of supercoiled elastic rings with self-contact and its application to DNA plasmids. J Elast 60(3):173–221MathSciNetMATH
4.
Zurück zum Zitat Nakano A (1999) A rigid-body-based multiple time scale molecular dynamics simulation of nanophase materials. Int J High Perform Comput 13(2):154–162 Nakano A (1999) A rigid-body-based multiple time scale molecular dynamics simulation of nanophase materials. Int J High Perform Comput 13(2):154–162
5.
Zurück zum Zitat Spillman J, Teschner M (2008) Cosserat nets. IEEE Trans Vis Comput Graph 15(2):325–338 Spillman J, Teschner M (2008) Cosserat nets. IEEE Trans Vis Comput Graph 15(2):325–338
6.
Zurück zum Zitat Gilles B, Bousquet G, Faure F, Pai DK (2011) Frame-based elastic models. ACM Trans Graph 30(2):15:1–15:12 Gilles B, Bousquet G, Faure F, Pai DK (2011) Frame-based elastic models. ACM Trans Graph 30(2):15:1–15:12
7.
Zurück zum Zitat Horn BKP (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am A 4(4):629–642 Horn BKP (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am A 4(4):629–642
8.
Zurück zum Zitat Trivedi D, Lotfi A, Rahn CD (2008) Geometrically exact models for soft robotic manipulators. IEEE Trans Robot 24(4):773–780 Trivedi D, Lotfi A, Rahn CD (2008) Geometrically exact models for soft robotic manipulators. IEEE Trans Robot 24(4):773–780
9.
Zurück zum Zitat Reissner E (1972) On one-dimensional finite-strain beam theory: the plane problem. Z Angew Math Phys 23(5):795–804MATH Reissner E (1972) On one-dimensional finite-strain beam theory: the plane problem. Z Angew Math Phys 23(5):795–804MATH
10.
Zurück zum Zitat Antman SS (2005) Nonlinear problems of elasticity. Springer, New YorkMATH Antman SS (2005) Nonlinear problems of elasticity. Springer, New YorkMATH
11.
Zurück zum Zitat Reissner E (1981) On finite deformations of space-curved beams. Z Angew Math Phys 32(6):734–744MATH Reissner E (1981) On finite deformations of space-curved beams. Z Angew Math Phys 32(6):734–744MATH
12.
Zurück zum Zitat Simo JC (1985) A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput Method Appl Mech 49(1):55–70MATH Simo JC (1985) A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput Method Appl Mech 49(1):55–70MATH
13.
Zurück zum Zitat Simo JC, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II: computational aspects. Comput Method Appl Mech 58(1):79–116MATH Simo JC, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II: computational aspects. Comput Method Appl Mech 58(1):79–116MATH
14.
Zurück zum Zitat Cardona A, Géradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Numer Methods Eng 26(11):2403–2438MATH Cardona A, Géradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Numer Methods Eng 26(11):2403–2438MATH
15.
Zurück zum Zitat Ibrahimbegović A (1995) On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput Methods Appl Mech 22(1–2):11–26MATH Ibrahimbegović A (1995) On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements. Comput Methods Appl Mech 22(1–2):11–26MATH
16.
Zurück zum Zitat Jelenić G, Saje M (1995) A kinematically exact space finite strain beam model—finite element formulation by generalized virtual work principle. Comput Methods Appl Mech 120(1–2):131–161MathSciNetMATH Jelenić G, Saje M (1995) A kinematically exact space finite strain beam model—finite element formulation by generalized virtual work principle. Comput Methods Appl Mech 120(1–2):131–161MathSciNetMATH
17.
Zurück zum Zitat Smoleński WM (1999) Statically and kinematically exact nonlinear theory of rods and its numerical verification. Comput Methods Appl Mech 178(1–2):89–113MathSciNetMATH Smoleński WM (1999) Statically and kinematically exact nonlinear theory of rods and its numerical verification. Comput Methods Appl Mech 178(1–2):89–113MathSciNetMATH
18.
Zurück zum Zitat Argyris J (1982) An excursion into large rotations. Comput Methods Appl Mech 32(1–3):85–155MathSciNetMATH Argyris J (1982) An excursion into large rotations. Comput Methods Appl Mech 32(1–3):85–155MathSciNetMATH
19.
Zurück zum Zitat Argyris J, Poterasu VF (1993) Large rotations revisited application of Lie algebra. Comput Methods Appl Mech 103(1–2):11–42MathSciNetMATH Argyris J, Poterasu VF (1993) Large rotations revisited application of Lie algebra. Comput Methods Appl Mech 103(1–2):11–42MathSciNetMATH
20.
Zurück zum Zitat Géradin M, Rixen D (1995) Parametrization of finite rotations in computational dynamics: a review. Revue Européenne des Eléments Finis 4(5–6):497–553MathSciNetMATH Géradin M, Rixen D (1995) Parametrization of finite rotations in computational dynamics: a review. Revue Européenne des Eléments Finis 4(5–6):497–553MathSciNetMATH
21.
Zurück zum Zitat Spring KW (1986) Euler parameters and the use of quaternion algebra in the manipulation of finite rotations: a review. Mech Mach Theory 21(5):365–373 Spring KW (1986) Euler parameters and the use of quaternion algebra in the manipulation of finite rotations: a review. Mech Mach Theory 21(5):365–373
22.
Zurück zum Zitat Atluri SN, Cazzani A (1995) Rotations in computational solid mechanics. Arch Comput Methods Eng 2(1):49–138MathSciNet Atluri SN, Cazzani A (1995) Rotations in computational solid mechanics. Arch Comput Methods Eng 2(1):49–138MathSciNet
23.
Zurück zum Zitat Zupan E, Saje M, Zupan D (2009) The quaternion-based three-dimensional beam theory. Comput Methods Appl Mech 198(49–52):3944–3956MathSciNetMATH Zupan E, Saje M, Zupan D (2009) The quaternion-based three-dimensional beam theory. Comput Methods Appl Mech 198(49–52):3944–3956MathSciNetMATH
24.
Zurück zum Zitat Češarek P, Saje M, Zupan D (2012) Kinematically exact curved and twisted strain-based beam. Int J Solids Struct 49(13):1802–1817 Češarek P, Saje M, Zupan D (2012) Kinematically exact curved and twisted strain-based beam. Int J Solids Struct 49(13):1802–1817
25.
Zurück zum Zitat Zupan D, Saje M (2003) Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures. Int J Solids Struct 192(49–50):5209–5248MathSciNetMATH Zupan D, Saje M (2003) Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures. Int J Solids Struct 192(49–50):5209–5248MathSciNetMATH
26.
Zurück zum Zitat Stuelpnagel J (1964) On the parametrization of the three-dimensional rotation group. SIAM Rev 6(4):422–430MathSciNetMATH Stuelpnagel J (1964) On the parametrization of the three-dimensional rotation group. SIAM Rev 6(4):422–430MathSciNetMATH
27.
Zurück zum Zitat Pimenta PM, Campello EMB, Wriggers P (2008) An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 1: rods. Comput Mech 42(5):715–732MathSciNetMATH Pimenta PM, Campello EMB, Wriggers P (2008) An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 1: rods. Comput Mech 42(5):715–732MathSciNetMATH
28.
Zurück zum Zitat Neto AG, Martins CA, Pimenta PM (2014) Static analysis of offshore risers with a geometrically-exact 3D beam model subjected to unilateral contact. Comput Mech 53(1):125–145MathSciNet Neto AG, Martins CA, Pimenta PM (2014) Static analysis of offshore risers with a geometrically-exact 3D beam model subjected to unilateral contact. Comput Mech 53(1):125–145MathSciNet
29.
Zurück zum Zitat Ibrahimbegović A (1997) On the choice of finite rotation parameters. Comput Methods Appl Mech 149(1–4):49–71MathSciNetMATH Ibrahimbegović A (1997) On the choice of finite rotation parameters. Comput Methods Appl Mech 149(1–4):49–71MathSciNetMATH
30.
Zurück zum Zitat Crisfield MA, Jelenić G (1999) Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc Roy Soc Lond A Math 455(1–4):1125–1147MathSciNetMATH Crisfield MA, Jelenić G (1999) Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc Roy Soc Lond A Math 455(1–4):1125–1147MathSciNetMATH
31.
Zurück zum Zitat Battini JM, Pacoste C (2002) Co-rotational beam elements with warping effects in instability problems. Comput Methods Appl Mech 191(17–18):1755–1789MATH Battini JM, Pacoste C (2002) Co-rotational beam elements with warping effects in instability problems. Comput Methods Appl Mech 191(17–18):1755–1789MATH
32.
Zurück zum Zitat McRobie FA, Lasenby J (1999) Simo–Vu Quoc rods using Clifford algebra. Int J Numer Methods Eng 45(4):377–398MathSciNetMATH McRobie FA, Lasenby J (1999) Simo–Vu Quoc rods using Clifford algebra. Int J Numer Methods Eng 45(4):377–398MathSciNetMATH
33.
Zurück zum Zitat Zupan E, Saje M, Zupan D (2013) Dynamics of spatial beams in quaternion description based on the Newmark integration scheme. Comput Mech 51(1):47–64MathSciNetMATH Zupan E, Saje M, Zupan D (2013) Dynamics of spatial beams in quaternion description based on the Newmark integration scheme. Comput Mech 51(1):47–64MathSciNetMATH
34.
Zurück zum Zitat Zupan E, Zupan D (2016) Velocity-based approach in non-linear dynamics of three-dimensional beams with enforced kinematic compatibility. Comput Methods Appl Mech 310:406–428MathSciNetMATH Zupan E, Zupan D (2016) Velocity-based approach in non-linear dynamics of three-dimensional beams with enforced kinematic compatibility. Comput Methods Appl Mech 310:406–428MathSciNetMATH
35.
Zurück zum Zitat Zupan E, Zupan D (2019) On conservation of energy and kinematic compatibility in dynamics of nonlinear velocity-based three-dimensional beams. Nonlinear Dyn 95(2):1379–1394MATH Zupan E, Zupan D (2019) On conservation of energy and kinematic compatibility in dynamics of nonlinear velocity-based three-dimensional beams. Nonlinear Dyn 95(2):1379–1394MATH
36.
Zurück zum Zitat Tabarrok B, Farshad M, Yi H (1988) Finite element formulation of spatially curved and twisted rods. Comput Methods Appl Mech 70(3):275–299MATH Tabarrok B, Farshad M, Yi H (1988) Finite element formulation of spatially curved and twisted rods. Comput Methods Appl Mech 70(3):275–299MATH
37.
Zurück zum Zitat Zupan D, Saje M (2006) The linearized three-dimensional beam theory of naturally curved and twisted beams: the strain vectors formulation. Comput Methods Appl Mech 195(33–36):4557–4578MATH Zupan D, Saje M (2006) The linearized three-dimensional beam theory of naturally curved and twisted beams: the strain vectors formulation. Comput Methods Appl Mech 195(33–36):4557–4578MATH
38.
Zurück zum Zitat Ward JP (2012) Quaternions and Cayley numbers: algebra and applications. Springer, BerlinMATH Ward JP (2012) Quaternions and Cayley numbers: algebra and applications. Springer, BerlinMATH
39.
Zurück zum Zitat Zupan E, Zupan D (2014) On higher order integration of angular velocities using quaternions. Mech Res Commun 55:77–85MATH Zupan E, Zupan D (2014) On higher order integration of angular velocities using quaternions. Mech Res Commun 55:77–85MATH
40.
Zurück zum Zitat Zupan E, Saje M, Zupan D (2013) On a virtual work consistent three-dimensional Reissner–Simo beam formulation using the quaternion algebra. Acta Mech 224(8):1709–1729MathSciNetMATH Zupan E, Saje M, Zupan D (2013) On a virtual work consistent three-dimensional Reissner–Simo beam formulation using the quaternion algebra. Acta Mech 224(8):1709–1729MathSciNetMATH
41.
Zurück zum Zitat Room TG (1952) The composition of rotations in Euclidean three-space. Am Math Mon 59(10):688–692MathSciNetMATH Room TG (1952) The composition of rotations in Euclidean three-space. Am Math Mon 59(10):688–692MathSciNetMATH
42.
Zurück zum Zitat The Mathworks, Inc (2019) MATLAB version 9.6.0.1150989 (R2019a). Natick, Massachusetts The Mathworks, Inc (2019) MATLAB version 9.6.0.1150989 (R2019a). Natick, Massachusetts
43.
Zurück zum Zitat ANSYS, Inc. (2019) Academic research mechanical, release R2 2019. Help system, element reference ANSYS, Inc. (2019) Academic research mechanical, release R2 2019. Help system, element reference
44.
Zurück zum Zitat Dassault Systèmes Simulia Corp. (2019) ABAQUS documentation 6.13, Providence, RI, USA Dassault Systèmes Simulia Corp. (2019) ABAQUS documentation 6.13, Providence, RI, USA
45.
Zurück zum Zitat Ibrahimbegović A, Taylor RL (2002) On the role of frame-invariance in structural mechanics models at finite rotations. Comput Methods Appl Mech 191(45):5159–5176MathSciNetMATH Ibrahimbegović A, Taylor RL (2002) On the role of frame-invariance in structural mechanics models at finite rotations. Comput Methods Appl Mech 191(45):5159–5176MathSciNetMATH
Metadaten
Titel
A consistent strain-based beam element with quaternion representation of rotations
verfasst von
Damjan Lolić
Dejan Zupan
Miha Brojan
Publikationsdatum
10.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2020
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-020-01826-0

Weitere Artikel der Ausgabe 5/2020

Computational Mechanics 5/2020 Zur Ausgabe

Neuer Inhalt